Knowledge Agora



Scientific Article details

Title Profile-based latent class distance association analyses for sparse tables:application to the attitude of European citizens towards sustainable tourism
ID_Doc 25986
Authors Bassi, F; Vera, JF; Martín, JAM
Title Profile-based latent class distance association analyses for sparse tables:application to the attitude of European citizens towards sustainable tourism
Year 2023
Published
DOI 10.1007/s11634-023-00559-1
Abstract Social and behavioural sciences often deal with the analysis of associations for cross-classified data. This paper focuses on the study of the patterns observed on European citizens regarding their attitude towards sustainable tourism, specifically their willingness to change travel and tourism habits to be more sustainable. The data collected the intention to comply with nine sustainable actions; answers to these questions generated individual profiles; moreover, European country belonging is reported. Therefore, unlike a variable-oriented approach, here we are interested in a person-oriented approach through profiles. Some traditional methods are limited in their performance when using profiles, for example, by sparseness of the contingency table. We removed many of these limitations by using a latent class distance association model, clustering the row profiles into classes and representing these together with the categories of the response variable in a low-dimensional space. We showed, furthermore, that an easy interpretation of associations between clusters' centres and categories of a response variable can be incorporated in this framework in an intuitive way using unfolding. Results of the analyses outlined that citizens mostly committed to an environmentally friendly behavior live in Sweden and Romania; citizens less willing to change their habits towards a more sustainable behavior live in Belgium, Cyprus, France, Lithuania and the Netherlands. Citizens preparedness to change habits however depends also on their socio-demographic characteristics such as gender, age, occupation, type of community where living, household size, and the frequency of travelling before the Covid-19 pandemic.
Author Keywords Clustering; Person-based analysis; Unfolding; Circular economy; Sustainability; Tourism; European union
Index Keywords Index Keywords
Document Type Other
Open Access Open Access
Source Science Citation Index Expanded (SCI-EXPANDED)
EID WOS:001086349500001
WoS Category Statistics & Probability
Research Area Mathematics
PDF https://link.springer.com/content/pdf/10.1007/s11634-023-00559-1.pdf
Similar atricles
Scroll