Knowledge Agora



Scientific Article details

Title Grape Pomace Extract Attenuates Inflammatory Response in Intestinal Epithelial and Endothelial Cells: Potential Health-Promoting Properties in Bowel Inflammation
ID_Doc 29222
Authors Calabriso, N; Massaro, M; Scoditti, E; Verri, T; Barca, A; Gerardi, C; Giovinazzo, G; Carluccio, MA
Title Grape Pomace Extract Attenuates Inflammatory Response in Intestinal Epithelial and Endothelial Cells: Potential Health-Promoting Properties in Bowel Inflammation
Year 2022
Published Nutrients, 14.0, 6
DOI 10.3390/nu14061175
Abstract Inflammatory bowel disease (IBD) implies the chronic inflammation of the gastrointestinal tract, combined with systemic vascular manifestations. In IBD, the incidence of cardiovascular disease appears to be related to an increase of oxidative stress and endothelial dysfunction. Grape pomace contains high levels of anti-oxidant polyphenols that are able to counteract chronic inflammatory symptoms. The aim of this study was to determine whether grape pomace polyphenolic extract (GPE) was able to mitigate the overwhelming inflammatory response in enterocyte-like cells and to improve vascular function. Intestinal epithelial Caco-2 cells, grown in monolayers or in co-culture with endothelial cells (Caco-2/HMEC-1), were treated with different concentrations of GPE (1, 5, 10 mu g/mL gallic acid equivalents) for 2 h and then stimulated with lipopolysaccharide (LPS) and tumor necrosis factor (TNF)-alpha for 16 h. Through multiple assays, the expression of intestinal and endothelial inflammatory mediators, intracellular reactive oxygen species (ROS) levels and NF-kappa B activation, as well as endothelial-leukocyte adhesion, were evaluated. The results showed that GPE supplementation prevented, in a concentration-dependent manner, the intestinal expression and release of interleukin (IL)-6, monocyte chemoattractant protein (MCP)-1, and matrix metalloproteinases (MMP)-9 and MMP-2. In Caco-2 cells, GPE also suppressed the gene expression of several pro-inflammatory markers, such as IL-1 beta, TNF-alpha, macrophage colony-stimulating factor (M-CSF), C-X-C motif ligand (CXCL)-10, intercellular adhesion molecule (ICAM)-1, vascular cell adhesion molecule (VCAM)-1, and cyclooxygenase (COX)-2. The GPE anti-inflammatory effect was mediated by the inhibition of NF-kappa B activity and reduced intracellular ROS levels. Furthermore, transepithelial GPE suppressed the endothelial expression of IL-6, MCP-1, VCAM-1, and ICAM-1 and the subsequent adhesion of leukocytes to the endothelial cells under pro-inflammatory conditions. In conclusion, our findings suggest grape pomace as a natural source of polyphenols with multiple health-promoting properties that could contribute to the mitigation of gut chronic inflammatory diseases and improve vascular endothelial function.
Author Keywords gut inflammation; endothelial dysfunction; pro-inflammatory markers; leukocyte adhesion; grape pomace; polyphenols; oxidative stress; gene expression
Index Keywords Index Keywords
Document Type Other
Open Access Open Access
Source Science Citation Index Expanded (SCI-EXPANDED)
EID WOS:000774409800001
WoS Category Nutrition & Dietetics
Research Area Nutrition & Dietetics
PDF https://www.mdpi.com/2072-6643/14/6/1175/pdf?version=1646985786
Similar atricles
Scroll