Title |
Life cycle, techno-economic and dynamic simulation assessment of bioelectrochemical systems: A case of formic acid synthesis |
ID_Doc |
29305 |
Authors |
Shemfe, M; Gadkari, S; Yu, E; Rasul, S; Scott, K; Head, IM; Gu, S; Sadhukhan, J |
Title |
Life cycle, techno-economic and dynamic simulation assessment of bioelectrochemical systems: A case of formic acid synthesis |
Year |
2018 |
Published |
|
DOI |
10.1016/j.biortech.2018.01.071 |
Abstract |
A novel framework, integrating dynamic simulation (DS), life cycle assessment (LCA) and techno-economic assessment (TEA) of a bioelectrochemical system (BES), has been developed to study for the first time waste-water treatment by removal of chemical oxygen demand (COD) by oxidation in anode and thereby harvesting electron and proton for carbon dioxide reduction reaction or reuse to produce products in cathode. Increases in initial COD and applied potential increase COD removal and production (in this case formic acid) rates. DS correlations are used in LCA and TEA for holistic performance analyses. The cost of production of HCOOH is (sic)0.015-0.005 g(-1) for its production rate of 0.094-0.26 kg yr(-1) and a COD removal rate of 0.038-0.106 kg yr(-1). The life cycle (LC) benefits by avoiding fossil-based formic acid production (93%) and electricity for wastewater treatment (12%) outweigh LC costs of operation and assemblage of BES (-5%), giving a net 61MJkg(-1) HCOOH saving. |
Author Keywords |
Resource recovery and productivity from waste; Technical systems for policy; Circular economy; Electrochemical biorefinery; Carbon dioxide capture and reuse |
Index Keywords |
Index Keywords |
Document Type |
Other |
Open Access |
Open Access |
Source |
Science Citation Index Expanded (SCI-EXPANDED) |
EID |
WOS:000426216400006 |
WoS Category |
Agricultural Engineering; Biotechnology & Applied Microbiology; Energy & Fuels |
Research Area |
Agriculture; Biotechnology & Applied Microbiology; Energy & Fuels |
PDF |
https://doi.org/10.1016/j.biortech.2018.01.071
|