Title |
Recent Advances on Porous Siliceous Materials Derived from Waste |
ID_Doc |
29461 |
Authors |
Montini, D; Cara, C; D'Arienzo, M; Di Credico, B; Mostoni, S; Nisticò, R; Pala, L; Scotti, R |
Title |
Recent Advances on Porous Siliceous Materials Derived from Waste |
Year |
2023 |
Published |
Materials, 16.0, 16 |
DOI |
10.3390/ma16165578 |
Abstract |
In recent years, significant efforts have been made in view of a transition from a linear to a circular economy, where the value of products, materials, resources, and waste is maintained as long as possible in the economy. The re-utilization of industrial and agricultural waste into value-added products, such as nanostructured siliceous materials, has become a challenging topic as an effective strategy in waste management and a sustainable model aimed to limit the use of landfill, conserve natural resources, and reduce the use of harmful substances. In light of these considerations, nanoporous silica has attracted attention in various applications owing to the tunable pore dimensions, high specific surface areas, tailorable structure, and facile post-functionalization. In this review, recent progress on the synthesis of siliceous materials from different types of waste is presented, analyzing the factors influencing the size and morphology of the final product, alongside different synthetic methods used to impart specific porosity. Applications in the fields of wastewater/gas treatment and catalysis are discussed, focusing on process feasibility in large-scale productions. |
Author Keywords |
agricultural waste; inorganic materials; hexafluorosilicic acid; porous materials; silica |
Index Keywords |
Index Keywords |
Document Type |
Other |
Open Access |
Open Access |
Source |
Science Citation Index Expanded (SCI-EXPANDED) |
EID |
WOS:001056384300001 |
WoS Category |
Chemistry, Physical; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering; Physics, Applied; Physics, Condensed Matter |
Research Area |
Chemistry; Materials Science; Metallurgy & Metallurgical Engineering; Physics |
PDF |
https://www.mdpi.com/1996-1944/16/16/5578/pdf?version=1691739438
|