Knowledge Agora



Scientific Article details

Title Current Knowledge on Polyethylene Terephthalate Degradation by Genetically Modified Microorganisms
ID_Doc 29542
Authors Urbanek, AK; Kosiorowska, KE; Mironczuk, AM
Title Current Knowledge on Polyethylene Terephthalate Degradation by Genetically Modified Microorganisms
Year 2021
Published
DOI 10.3389/fbioe.2021.771133
Abstract The global production of polyethylene terephthalate (PET) is estimated to reach 87.16 million metric tons by 2022. After a single use, a remarkable part of PET is accumulated in the natural environment as plastic waste. Due to high hydrophobicity and high molecular weight, PET is hardly biodegraded by wild-type microorganisms. To solve the global problem of uncontrolled pollution by PET, the degradation of plastic by genetically modified microorganisms has become a promising alternative for the plastic circular economy. In recent years many studies have been conducted to improve the microbial capacity for PET degradation. In this review, we summarize the current knowledge about metabolic engineering of microorganisms and protein engineering for increased biodegradation of PET. The focus is on mutations introduced to the enzymes of the hydrolase class-PETase, MHETase and cutinase-which in the last few years have attracted growing interest for the PET degradation processes. The modifications described in this work summarize the results obtained so far on the hydrolysis of polyethylene terephthalate based on the released degradation products of this polymer.
Author Keywords plastic degradation; genetic engineering; microorganisms; PET; protein
Index Keywords Index Keywords
Document Type Other
Open Access Open Access
Source Science Citation Index Expanded (SCI-EXPANDED)
EID WOS:000729901100001
WoS Category Biotechnology & Applied Microbiology; Engineering, Biomedical
Research Area Biotechnology & Applied Microbiology; Engineering
PDF https://www.frontiersin.org/articles/10.3389/fbioe.2021.771133/pdf
Similar atricles
Scroll