Knowledge Agora



Scientific Article details

Title Chance-Constrained Optimization for Multienergy Hub Systems in a Smart City
ID_Doc 37830
Authors Huo, D; Gu, CH; Ma, K; Wei, W; Xiang, Y; Le Blond, S
Title Chance-Constrained Optimization for Multienergy Hub Systems in a Smart City
Year 2019
Published Ieee Transactions On Industrial Electronics, 66, 2
DOI 10.1109/TIE.2018.2863197
Abstract The energy hub is a powerful conceptualization of how to acquire, convert, and distribute energy resources in the smart city. However, uncertainties such as intermittent renewable energy injection present challenges to energy hub optimization. This paper solves the optimal energy flow of adjacent energy hubs to minimize the energy costs by utilizing the flexibility of energy resources in a smart city with uncertain renewable generation. It innovatively models the power and gas flows between hubs using chance constraints, thus permitting the temporary overloading acceptable on real energy networks. This novelty not only ensures system security but also helps reduce or defer network investment. By restricting the probability of chance constraints over a specific level, the energy hub optimization is formulated as a multiperiod stochastic problem with the total generation cost as the objective. Cornish-Fisher expansion is utilized to incorporate the chance constraints into the optimization, which transforms the stochastic problem into a deterministic problem. The interior-point method is then applied to resolve the developed model. The proposed chance-constrained optimization is demonstrated on a three-hub system and results extensively illustrate the impact of chance constraints on power and gas flows. This work can benefit energy hub operators by maximizing renewable energy penetration at the lowest cost in a smart city.
Author Keywords Chance-constrained programming (CCP); Cornish-Fisher expansion; energy hub; optimal flow
Index Keywords Index Keywords
Document Type Other
Open Access Open Access
Source Science Citation Index Expanded (SCI-EXPANDED)
EID WOS:000446340800055
WoS Category Automation & Control Systems; Engineering, Electrical & Electronic; Instruments & Instrumentation
Research Area Automation & Control Systems; Engineering; Instruments & Instrumentation
PDF https://researchportal.bath.ac.uk/files/184449356/ALL_17_TIE_3233.R3.pdf
Similar atricles
Scroll