Knowledge Agora



Scientific Article details

Title PS-Sim: A framework for scalable data simulation and incentivization in participatory sensing-based smart city applications
ID_Doc 39536
Authors Barnwal, RP; Ghosh, N; Ghosh, SK; Das, SK
Title PS-Sim: A framework for scalable data simulation and incentivization in participatory sensing-based smart city applications
Year 2019
Published
DOI 10.1016/j.pmcj.2019.04.008
Abstract The widespread penetration of smartphone has paved the way for a new paradigm of pervasive computing, known as the participatory sensing (PS). In PS, a human user explicitly performs the tasks of sensing and reporting, typically in lieu of incentives. One major limitation with PS is the sparsity of data owing to the lack of active participation, thus inhibiting large scale real-life experiments for the research community. In our preliminary work (Barnwal et al., 2018), we propose a spatio-temporal event occurrence and report generation based data simulation framework called PS-Sim. This paper extends the PS-Sim framework with a novel budget allocation mechanism for incentivizing participants. The allocation mechanism guarantees the presence of a threshold number of active participants and also ensures the reporting of the significant fraction of events for sustainability of PS applications. The simulation environment provided by the PS-Sim framework replicates real participation and event occurrence behaviors, which is expected to enable the domain experts to investigate and assess the requisites (benefits and challenges) of introducing smart city applications. As a part of the evaluation of the budget allocation mechanism, we study its performance under varying effects of reward and participation, and establish its fairness as far as the remuneration of active participants is concerned. (C) 2019 Elsevier B.V. All rights reserved.
Author Keywords Participatory sensing; Human participation; Simulation; Incentive; Quality of information
Index Keywords Index Keywords
Document Type Other
Open Access Open Access
Source Science Citation Index Expanded (SCI-EXPANDED)
EID WOS:000470252100005
WoS Category Computer Science, Information Systems; Telecommunications
Research Area Computer Science; Telecommunications
PDF
Similar atricles
Scroll