Knowledge Agora



Scientific Article details

Title The Smart in Smart Cities: A Framework for Image Classification Using Deep Learning
ID_Doc 39691
Authors Al-Qudah, R; Khamayseh, Y; Aldwairi, M; Khan, S
Title The Smart in Smart Cities: A Framework for Image Classification Using Deep Learning
Year 2022
Published Sensors, 22, 12
DOI 10.3390/s22124390
Abstract The need for a smart city is more pressing today due to the recent pandemic, lockouts, climate changes, population growth, and limitations on availability/access to natural resources. However, these challenges can be better faced with the utilization of new technologies. The zoning design of smart cities can mitigate these challenges. It identifies the main components of a new smart city and then proposes a general framework for designing a smart city that tackles these elements. Then, we propose a technology-driven model to support this framework. A mapping between the proposed general framework and the proposed technology model is then introduced. To highlight the importance and usefulness of the proposed framework, we designed and implemented a smart image handling system targeted at non-technical personnel. The high cost, security, and inconvenience issues may limit the cities' abilities to adopt such solutions. Therefore, this work also proposes to design and implement a generalized image processing model using deep learning. The proposed model accepts images from users, then performs self-tuning operations to select the best deep network, and finally produces the required insights without any human intervention. This helps in automating the decision-making process without the need for a specialized data scientist.
Author Keywords smart city; deep learning; zoning; transfer learning; images; automation
Index Keywords Index Keywords
Document Type Other
Open Access Open Access
Source Science Citation Index Expanded (SCI-EXPANDED)
EID WOS:000816348700001
WoS Category Chemistry, Analytical; Engineering, Electrical & Electronic; Instruments & Instrumentation
Research Area Chemistry; Engineering; Instruments & Instrumentation
PDF https://www.mdpi.com/1424-8220/22/12/4390/pdf?version=1654842311
Similar atricles
Scroll