Title |
An investigation of battery storage operating strategies in the context of smart cities |
ID_Doc |
41522 |
Authors |
Yao, X; Ma, SC; Fan, Y; Zhu, L; Su, B |
Title |
An investigation of battery storage operating strategies in the context of smart cities |
Year |
2022 |
Published |
Industrial Management & Data Systems, 122, 10 |
DOI |
10.1108/IMDS-01-2022-0011 |
Abstract |
Purpose The ongoing urbanization and decarbonization require deployment of energy storage in the urban energy system to integrate large-scale variable renewable energy (VRE) into the power grids. The cost reductions of batteries enable private entities to invest energy storage for energy management whose operating strategy may differ from traditional storage facilities. This study aims to investigate the impacts of energy storage on the power system with different operation strategies. Two strategies are modeled through a simulation-based regional economic power dispatch model. The profit-oriented strategy denotes the storage system operated by private entities for price arbitrage, and the nonprofit-oriented strategy denotes the storage system dispatched by an independent system operator (ISO) for the whole power system optimization. A case study of Jiangsu, China is conducted. The results show that the profit-oriented strategy only has a very limited impact on the cost reductions of power system and may even increase the cost for consumers. While nonprofit-oriented energy storage performs a positive effect on the system cost reduction. CO2 emission reduction can only be achieved under a high VRE scenario for energy storage. Integrating energy storage into the power system may increase CO2 emissions in the near term. In addition, the peak-valley spread is crucial to trigger operations of profit-oriented energy storage, and the profitability of energy storage operator is observed to be decreasing with the total storage capacity. This study provides new insights for the energy management in the smart city, and the modeling framework can be applied to regions with different resource endowments. Design/methodology/approach The authors characterize two battery storage operating strategies of profit- and nonprofit-oriented by adopting a simulation-based economic dispatch model. A simulation from 36 years of hourly weather data of wind and solar output from case study of Jiangsu, China is conducted. Findings The results show that the profit-oriented strategy only has a very limited impact on the cost reductions of power system and may even increase the cost for consumers. While nonprofit-oriented energy storage performs a positive effect on the system cost reduction. CO2 emission reduction can only be achieved under high VRE scenario for energy storage. Integrating energy storage into the power system may increase CO2 emissions in the near term. In addition, the peak-valley spread is crucial to trigger operations of profit-oriented energy storage, and the profitability of energy storage operator is observed to be decreasing with the total storage capacity. Originality/value This study provides new insights for the energy management in the smart city, and the modeling framework can be applied to regions with different resource endowments. |
Author Keywords |
Battery storage; CO2 emissions; Smart city; Power system; Operating strategy |
Index Keywords |
Index Keywords |
Document Type |
Other |
Open Access |
Open Access |
Source |
Science Citation Index Expanded (SCI-EXPANDED) |
EID |
WOS:000837704000001 |
WoS Category |
Computer Science, Interdisciplinary Applications; Engineering, Industrial |
Research Area |
Computer Science; Engineering |
PDF |
|