Knowledge Agora



Scientific Article details

Title Bicycle Sharing Systems meet AI: forecasting bicycles availability and decision-making
ID_Doc 43318
Authors Rozanec, JM; Krivec, T; Kersic, V; Cundric, L; Stojanovic, B; Zeman, M; Bratko, I
Title Bicycle Sharing Systems meet AI: forecasting bicycles availability and decision-making
Year 2022
Published
DOI
Abstract With the ubiquitous increase in the number of people in cities, there is a growing need for sustainable transport possibilities. Smart cities should provide environment-friendly ways to travel inside the city. One of the most nature-preserving ways to travel is using bicycles, which is often encouraged by public bicycle sharing systems, which are present in many cities around the globe. While these systems are usually easily accessible, they still lack optimization regarding bicycle availability across stations. This paper contributes towards the optimization of the bicycle sharing system in Ljubljana, Slovenia. We developed classification and regression machine learning models for predicting the emptiness and occupancy across bicycle stations in near future. These predictions allow for the caretakers of the system to intervene on time and provide enough bicycles across all stations.
Author Keywords Smart city; sustainable transport; bicycle sharing; optimization
Index Keywords Index Keywords
Document Type Other
Open Access Open Access
Source Conference Proceedings Citation Index - Science (CPCI-S)
EID WOS:001237764600040
WoS Category Computer Science, Artificial Intelligence; Computer Science, Software Engineering; Computer Science, Theory & Methods
Research Area Computer Science
PDF
Similar atricles
Scroll