Knowledge Agora



Scientific Article details

Title A hybrid route planning approach for logistics with pickup and delivery
ID_Doc 43632
Authors Lu, EHC; Yang, YW
Title A hybrid route planning approach for logistics with pickup and delivery
Year 2019
Published
DOI 10.1016/j.eswa.2018.10.031
Abstract With the busy life of modern people, more and more consumers are preferring to shop online. This change on shopping behavior results in large volumes of packages must be transported, and thus research on logistics planning considering real constraints has increased. To solve this problem, several heuristics or evolutionary methods with expert knowledge were proposed previously, but they are usually inefficient or need a large amount of memory. In this paper, we propose a hybrid approach called Iterative Logistics Solution Planner (ILSP) for not only quickly finding a nice logistics solution but also iteratively improving the solution quality while meeting the real logistics constraints. ILSP contains two main phases including initial logistics solution generation and iterative logistics solution improvement based on the intelligence and knowledge from domain experts. Several algorithms and strategies are designed in ILSP for package partitioning, route planning and quality improvement. From the view of expert systems, the significance and impact of ILSP are simultaneously taking both computational efficiency and iterative quality improvement based on the expert knowledge into account on logistics planning problem with pickup and delivery. Through the rigorous experimental evaluations of real logistics data, the results demonstrated the excellent performance of ILSP. (C) 2018 Elsevier Ltd. All rights reserved.
Author Keywords Hybrid approach; Logistics planning; Smart city; Expert system
Index Keywords Index Keywords
Document Type Other
Open Access Open Access
Source Science Citation Index Expanded (SCI-EXPANDED)
EID WOS:000451653400034
WoS Category Computer Science, Artificial Intelligence; Engineering, Electrical & Electronic; Operations Research & Management Science
Research Area Computer Science; Engineering; Operations Research & Management Science
PDF
Similar atricles
Scroll