Knowledge Agora



Scientific Article details

Title Theft Prediction Model Based on Spatial Clustering to Reflect Spatial Characteristics of Adjacent Lands
ID_Doc 43880
Authors Kim, D; Jung, S; Jeong, Y
Title Theft Prediction Model Based on Spatial Clustering to Reflect Spatial Characteristics of Adjacent Lands
Year 2021
Published Sustainability, 13, 14
DOI 10.3390/su13147715
Abstract Previous studies have shown that when a crime occurs, the risk of crime in adjacent areas increases. To reflect this, previous grid-based crime prediction studies combined all the cells surrounding the event location to be predicted for use in model training. However, the actual land is continuous rather than a set of independent cells as in a geographic information system. Because the patterns that occur according to the detailed method of crime vary, it is necessary to reflect the spatial characteristics of the adjacent land in crime prediction. In this study, cells with similar spatial characteristics were classified using the Max-p region model (a spatial clustering technique), and the performance was compared to the existing method using random forest (a tree-based machine learning model). According to the results, the F1 score of the model using spatial clustering increased by approximately 2%. Accordingly, there are differences in the physical environmental factors influenced by the detailed method of crime. The findings reveal that crime involving the same offender is likely to occur around the area of the original crime, indicating that a repeated crime is likely in areas with similar spatial features to the area where the crime occurred.
Author Keywords crime prediction; machine learning; spatial clustering; smart city; GIS
Index Keywords Index Keywords
Document Type Other
Open Access Open Access
Source Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
EID WOS:000677161700001
WoS Category Green & Sustainable Science & Technology; Environmental Sciences; Environmental Studies
Research Area Science & Technology - Other Topics; Environmental Sciences & Ecology
PDF https://www.mdpi.com/2071-1050/13/14/7715/pdf?version=1626080809
Similar atricles
Scroll