Knowledge Agora



Scientific Article details

Title Valorization of sorghum distillery residue to produce bioethanol for pollution mitigation and circular economy
ID_Doc 5301
Authors Chen, WH; Lo, HJ; Yu, KL; Ong, HC; Sheen, HK
Title Valorization of sorghum distillery residue to produce bioethanol for pollution mitigation and circular economy
Year 2021
Published
DOI 10.1016/j.envpol.2021.117196
Abstract This research aims to study the wet torrefaction (WT) and saccharification of sorghum distillery residue (SDR) towards hydrochar and bioethanol production. The experiments are designed by Box-Behnken design from response surface methodology where the operating conditions include sulfuric acid concentration (0, 0.01, and 0.02 M), amyloglucosidase concentration (36, 51, and 66 IU), and saccharification time (120, 180, and 240 min). Compared to conventional dry torrefaction, the hydrochar yield is between 13.24 and 14.73%, which is much lower than dry torrefaction biochar (yield >50%). The calorific value of the raw SDR is 17.15 MJ/kg, which is significantly enhanced to 22.36-23.37 MJ/kg after WT. When the sulfuric acid concentration increases from 0 to 0.02 M, the glucose concentration in the product increases from 5.59 g/L to 13.05 g/L. The prediction of analysis of variance suggests that the best combination to maximum glucose production is 0.02 M H2SO4, 66 IU enzyme concentration, and 120 min saccharification time, and the glucose concentration is 30.85 g/L. The maximum bioethanol concentration of 19.21 g/L is obtained, which is higher than those from wheat straw (18.1 g/L) and sweet sorghum residue (16.2 g/L). A large amount of SDR is generated in the kaoliang liquor production process, which may cause environmental problems if it is not appropriately treated. This study fulfills SDR valorization for hydrochar and bioenergy to lower environmental pollution and even achieve a circular economy. (C) 2021 Elsevier Ltd. All rights reserved.
Author Keywords Waste valorization; Bioethanol and hydrochar; Wet torrefaction (WT); Sorghum distillery residue (SDR); Response surface methodology (RSM); Optimization
Index Keywords Index Keywords
Document Type Other
Open Access Open Access
Source Science Citation Index Expanded (SCI-EXPANDED)
EID WOS:000685347400007
WoS Category Environmental Sciences
Research Area Environmental Sciences & Ecology
PDF
Similar atricles
Scroll