Knowledge Agora



Scientific Article details

Title Digital Innovation Enabled Nanomaterial Manufacturing; Machine Learning Strategies and Green Perspectives
ID_Doc 62142
Authors Konstantopoulos, G; Koumoulos, EP; Charitidis, CA
Title Digital Innovation Enabled Nanomaterial Manufacturing; Machine Learning Strategies and Green Perspectives
Year 2022
Published Nanomaterials, 12, 15
DOI 10.3390/nano12152646
Abstract Machine learning has been an emerging scientific field serving the modern multidisciplinary needs in the Materials Science and Manufacturing sector. The taxonomy and mapping of nanomaterial properties based on data analytics is going to ensure safe and green manufacturing with consciousness raised on effective resource management. The utilization of predictive modelling tools empowered with artificial intelligence (AI) has proposed novel paths in materials discovery and optimization, while it can further stimulate the cutting-edge and data-driven design of a tailored behavioral profile of nanomaterials to serve the special needs of application environments. The previous knowledge of the physics and mathematical representation of material behaviors, as well as the utilization of already generated testing data, received specific attention by scientists. However, the exploration of available information is not always manageable, and machine intelligence can efficiently (computational resources, time) meet this challenge via high-throughput multidimensional search exploration capabilities. Moreover, the modelling of bio-chemical interactions with the environment and living organisms has been demonstrated to connect chemical structure with acute or tolerable effects upon exposure. Thus, in this review, a summary of recent computational developments is provided with the aim to cover excelling research and present challenges towards unbiased, decentralized, and data-driven decision-making, in relation to increased impact in the field of advanced nanomaterials manufacturing and nanoinformatics, and to indicate the steps required to realize rapid, safe, and circular-by-design nanomaterials.
Author Keywords nanomaterials; artificial intelligence; machine learning; in silico design of materials; data-driven engineering; manufacturing
Index Keywords Index Keywords
Document Type Other
Open Access Open Access
Source Science Citation Index Expanded (SCI-EXPANDED)
EID WOS:000839751400001
WoS Category Chemistry, Multidisciplinary; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied
Research Area Chemistry; Science & Technology - Other Topics; Materials Science; Physics
PDF https://www.mdpi.com/2079-4991/12/15/2646/pdf?version=1659513699
Similar atricles
Scroll