Title |
Insights on a Ruddlesden-Popper phase as an active layer for a solid oxide fuel cell fed with dry biogas |
ID_Doc |
63518 |
Authors |
Vecino-Mantilla, S; Zignani, SC; Vannier, RN; Arico, AS; Lo Faro, M |
Title |
Insights on a Ruddlesden-Popper phase as an active layer for a solid oxide fuel cell fed with dry biogas |
Year |
2022 |
Published |
|
DOI |
10.1016/j.renene.2022.04.077 |
Abstract |
Solid oxide fuel cell (SOFC) is a mature opportunity for producing power energy in remote areas like islands, where access to the electrical grid is not favoured, and gas distribution is the only viable approach. In this context, generally, biogas represents the most convenient fuel resources in these areas. However, the direct use of biogas in SOFCs is still an issue to be solved due to its negative effect on the conventional Ni-YSZ anode. In this study, to overcome this issue, we suggested using a protective layer coated on the anode of a commercial SOFC. A nickel manganite showing mixed ionic and electronic conductivity tailored specifically for this approach was investigated. The preliminary characterisations showed that the formation of a Ruddlesden-Popper (RP) n = 1 structure supporting fine encapsulated particles based on Ni was formed around 800 ? in consequence of the reducing environment. The electrochemical experiments carried out for 270 h demonstrated for the coated cell significant stability in the presence of dry biogas, albeit an ageing effect was noticed in the electrical percolation of both cell electrodes. The post mortem analyses revealed an attractive redox property for the nickel manganite, which partially returned to the RP n = 2 phase. Moreover, the absence of carbon deposits on the anode suggests possible applications for this approach. (C) 2022 Elsevier Ltd. All rights reserved. |
Author Keywords |
Exsolution; Renewable; Green deal; High efficient technologies; Electrochemistry; Gas-to-Power |
Index Keywords |
Index Keywords |
Document Type |
Other |
Open Access |
Open Access |
Source |
Science Citation Index Expanded (SCI-EXPANDED) |
EID |
WOS:000804943800012 |
WoS Category |
Green & Sustainable Science & Technology; Energy & Fuels |
Research Area |
Science & Technology - Other Topics; Energy & Fuels |
PDF |
|