Knowledge Agora



Scientific Article details

Title Comparison of Hospital Building's Energy Consumption Prediction Using Artificial Neural Networks, ANFIS, and LSTM Network
ID_Doc 63985
Authors Panagiotou, DK; Dounis, AI
Title Comparison of Hospital Building's Energy Consumption Prediction Using Artificial Neural Networks, ANFIS, and LSTM Network
Year 2022
Published Energies, 15, 17
DOI 10.3390/en15176453
Abstract Since accurate load forecasting plays an important role in the improvisation of buildings and as described in EU's "Green Deal", financial resources saved through improvisation of the efficiency of buildings with social importance such as hospitals, will be the funds to support their mission, the social impact of load forecasting is significant. In the present paper, eight different machine learning predictors will be examined for the short-term load forecasting of a hospital's facility building. The challenge is to qualify the most suitable predictors for the abovementioned task, which is beneficial for an in-depth study on accurate predictors' applications in Intelligent Energy Management Systems (IEMS). Three Artificial Neural Networks using a backpropagation algorithm, three Artificial Neural Networks using metaheuristic optimization algorithms for training, an Adaptive Neuro-Fuzzy Inference System (ANFIS), and a Long-Short Term Memory (LSTM) network were tested using timeseries generated from a simulated healthcare facility. ANFIS and backpropagation-based trained models outperformed all other models since they both deal well with complex nonlinear problems. LSTM also performed adequately. The models trained with metaheuristic algorithms demonstrated poor performance.
Author Keywords artificial neural networks; adaptive neuro-fuzzy adaptive inference system; long short-term memory networks; backpropagation algorithms; metaheuristic algorithms; machine learning; load forecasting
Index Keywords Index Keywords
Document Type Other
Open Access Open Access
Source Science Citation Index Expanded (SCI-EXPANDED)
EID WOS:000851160600001
WoS Category Energy & Fuels
Research Area Energy & Fuels
PDF https://www.mdpi.com/1996-1073/15/17/6453/pdf?version=1662439217
Similar atricles
Scroll