Knowledge Agora



Scientific Article details

Title Measurement of Temperature and H2O Concentration in Premixed CH4/Air Flame Using Two Partially Overlapped H2O Absorption Signals in the Near Infrared Region
ID_Doc 64671
Authors So, S; Jeong, N; Song, A; Hwang, J; Kim, D; Lee, C
Title Measurement of Temperature and H2O Concentration in Premixed CH4/Air Flame Using Two Partially Overlapped H2O Absorption Signals in the Near Infrared Region
Year 2021
Published Applied Sciences-Basel, 11, 8
DOI 10.3390/app11083701
Abstract It is important to monitor the temperature and H2O concentration in a large combustion environment in order to improve combustion (and thermal) efficiency and reduce harmful combustion emissions. However, it is difficult to simultaneously measure both internal temperature and gas concentration in a large combustion system because of the harsh environment with rapid flow. In regard, tunable diode laser absorption spectroscopy, which has the advantages of non-intrusive, high-speed response, and in situ measurement, is highly attractive for measuring the concentration of a specific gas species in the combustion environment. In this study, two partially overlapped H2O absorption signals were used in the tunable diode laser absorption spectroscopy (TDLAS) to measure the temperature and H2O concentration in a premixed CH4/air flame due to the wide selection of wavelengths with high temperature sensitivity and advantages where high frequency modulation can be applied. The wavelength regions of the two partially overlapped H2O absorptions were 1.3492 and 1.34927 mu m. The measured signals separated the multi-peak Voigt fitting. As a result, the temperature measured by TDLAS based on multi-peak Voigt fitting in the premixed CH4/air flame was the highest at 1385.80 K for an equivalence ratio of 1.00. It also showed a similarity to those tendencies to the temperature measured by the corrected R-type T/C. In addition, the H2O concentrations measured by TDLAS based on the total integrated absorbance area for various equivalent ratios were consistent with those calculated by the chemical equilibrium simulation. Additionally, the H2O concentration measured at an equivalence ratio of 1.15 was the highest at 18.92%.
Author Keywords tunable diode laser absorption spectroscopy; temperature; concentration; partially overlapped absorption; premixed flame
Index Keywords Index Keywords
Document Type Other
Open Access Open Access
Source Science Citation Index Expanded (SCI-EXPANDED)
EID WOS:000644001700001
WoS Category Chemistry, Multidisciplinary; Engineering, Multidisciplinary; Materials Science, Multidisciplinary; Physics, Applied
Research Area Chemistry; Engineering; Materials Science; Physics
PDF https://www.mdpi.com/2076-3417/11/8/3701/pdf?version=1618908488
Similar atricles
Scroll