Knowledge Agora



Scientific Article details

Title New particle formation event detection with convolutional neural networks
ID_Doc 65129
Authors Zhang, X; Wu, LJ; Liu, XS; Wang, T; Monge, M; Garcia-Marlès, M; Savadkoohi, M; Salma, I; Bastian, S; Merkel, M; Weinhold, K; Wiedensohler, A; Gerwig, H; Putaud, J; Dos Dantos, SM; Ondracek, J; Zikova, N; Minkos, A; Pandolfi, M; Alastuey, A; Querol, X
Title New particle formation event detection with convolutional neural networks
Year 2024
Published
DOI 10.1016/j.atmosenv.2024.120487
Abstract New aerosol particle formation (NPF) events play a significant role in altering aerosol concentrations and dispersion within the atmosphere, making them vital for both climate and air quality research. The primary objective of investigating NPF events is to precisely determine their occurrence dates. In this study, we introduced the ConvNeXt model for the first time to identify NPF events, and compared its performance with two other deep learning models, EfficientNet and Swin Transformer. Our main aim was to automate an objective identification and classification of NPF events accurately. All three models employed transfer learning to effectively capture critical features associated with NPF. Our results demonstrated that the ConvNeXt model significantly outperformed the other models, achieving an impressive accuracy rate of 95.3% on event days, surpassing EfficientNet (92.8%) and Swin Transformer (94.9%). Furthermore, we performed tests using different ConvNeXt variants (ConvNeXt-T/S/B/L/XL) and different pre-training weights, revealing that different configurations of ConvNeXt models exhibited improved NPF event recognition capabilities. Finally, we conducted generalizability experiments using the ConvNeXt-XL model, achieving the highest accuracy of 96.4% on event days. This study not only underscores the recognition prowess of ConvNeXt models but also highlights their practical utility in accurately detecting NPF events in real-world scenarios. This contribution aids in advancing Atmospheric our comprehension of aerosol dynamics in atmospheric environments, providing valuable insights for climate and air quality research.
Author Keywords Ultrafine particles nucleation; ConvNeXt; Deep learning; Image classification
Index Keywords Index Keywords
Document Type Other
Open Access Open Access
Source Science Citation Index Expanded (SCI-EXPANDED)
EID WOS:001224901200001
WoS Category Environmental Sciences; Meteorology & Atmospheric Sciences
Research Area Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences
PDF https://doi.org/10.1016/j.atmosenv.2024.120487
Similar atricles
Scroll