Knowledge Agora



Scientific Article details

Title Evaluation Analysis of the CO2 Emission and Absorption Life Cycle for Precast Concrete in Korea
ID_Doc 69569
Authors Kim, T; Chae, CU
Title Evaluation Analysis of the CO2 Emission and Absorption Life Cycle for Precast Concrete in Korea
Year 2016
Published Sustainability, 8.0, 7
DOI 10.3390/su8070663
Abstract To comply with recent international trends and initiatives, and in order to help achieve sustainable development, Korea has established a greenhouse gas (GHG) emission reduction target of 37% (851 million tons) of the business as usual (BAU) rate by 2030. Regarding environmentally-oriented standards such as the IGCC (International Green Construction Code), there are also rising demands for the assessment on CO2 emissions during the life cycle in accordance with ISO (International Standardization Organization's Standard) 14040. At present, precast concrete (PC) engineering-related studies primarily cover structural and construction aspects, including improvement of structural performance in the joint, introduction of pre-stressed concrete and development of half PC. In the manufacture of PC, steam curing is mostly used for the early-strength development of concrete. In steam curing, a large amount of CO2 is produced, causing an environmental problem. Therefore, this study proposes a method to assess CO2 emissions (including absorption) throughout the PC life cycle by using a life cycle assessment (LCA) method. Using the proposed assessment method, CO2 emissions during the life cycle of a precast concrete girder (PCG) were assessed. In addition, CO2 absorption was assessed against a PCG using conventional carbonation and CO2 absorption-related models. As a result, the CO2 emissions throughout the life cycle of the PCG were 1365.6 (kg-CO2/1 PCG). The CO2 emissions during the production of raw materials among the CO2 emissions throughout the life cycle of the PCG were 1390 (kg-CO2/1 PCG), accounting for a high portion to total CO2 emissions (nearly 90%). In contrast, the transportation and manufacture stages were 1% and 10%, respectively, having little effect on total CO2 emissions. Among the use of the PCG, CO2 absorption was mostly decided by the CO2 diffusion coefficient and the amount of CO2 absorption by cement paste. The CO2 absorption by carbonation throughout the service life of the PC was about 11% of the total CO2 emissions, which is about 16% of CO2 emissions from ordinary Portland cement (OPC) concrete.
Author Keywords precast concrete; life cycle assessment; carbon dioxide; CO2 absorption; carbonation
Index Keywords Index Keywords
Document Type Other
Open Access Open Access
Source Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
EID WOS:000380760400074
WoS Category Green & Sustainable Science & Technology; Environmental Sciences; Environmental Studies
Research Area Science & Technology - Other Topics; Environmental Sciences & Ecology
PDF https://www.mdpi.com/2071-1050/8/7/663/pdf?version=1468410456
Similar atricles
Scroll