Title |
Tracking the formation potential of vivianite within the treatment train of full-scale wastewater treatment plants |
ID_Doc |
8548 |
Authors |
Amin, L; Al-Juboori, RA; Lindroos, F; Bounouba, M; Blomberg, K; Viveros, ML; Graan, M; Azimi, S; Linden, J; Mikola, A; Spérandio, M |
Title |
Tracking the formation potential of vivianite within the treatment train of full-scale wastewater treatment plants |
Year |
2024 |
Published |
|
DOI |
10.1016/j.scitotenv.2023.169520 |
Abstract |
Phosphorus recovery is a vital element for the circular economy. Wastewater, especially sewage sludge, shows great potential for recovering phosphate in the form of vivianite. This work focuses on studying the iron, phosphorus, and sulfur interactions at full-scale wastewater treatment plants (Viikinmaki, Finland and Seine Aval, France) with the goal of identifying unit processes with a potential for vivianite formation. Concentrations of iron(III) and iron(II), phosphorus, and sulfur were used to evaluate the reduction of iron and the formation potential of vivianite. Mossbauer spectroscopy and X-ray diffraction (XRD) analysis were used to confirm the presence of vivianite in various locations on sludge lines. The results show that the vivianite formation potential increases as the molar Fe:P ratio increases, the anaerobic sludge retention time increases, and the sulfate concentration decreases. The digester is a prominent location for vivianite recovery, but not the only one. This work gives valuable insights into the dynamic interrelations of iron, phosphorus, and sulfur in full-scale conditions. These results will support the understanding of vivianite formation and pave the way for an alternative solution for vivianite recovery for example in plants that do not have an anaerobic digester. |
Author Keywords |
Vivianite; Phosphorus recovery; Mossbauer spectroscopy; Full-scale sampling; Pyrite |
Index Keywords |
Index Keywords |
Document Type |
Other |
Open Access |
Open Access |
Source |
Science Citation Index Expanded (SCI-EXPANDED) |
EID |
WOS:001164934900001 |
WoS Category |
Environmental Sciences |
Research Area |
Environmental Sciences & Ecology |
PDF |
https://doi.org/10.1016/j.scitotenv.2023.169520
|