Knowledge Agora



Scientific Article details

Title Tracking the formation potential of vivianite within the treatment train of full-scale wastewater treatment plants
ID_Doc 8548
Authors Amin, L; Al-Juboori, RA; Lindroos, F; Bounouba, M; Blomberg, K; Viveros, ML; Graan, M; Azimi, S; Linden, J; Mikola, A; Spérandio, M
Title Tracking the formation potential of vivianite within the treatment train of full-scale wastewater treatment plants
Year 2024
Published
DOI 10.1016/j.scitotenv.2023.169520
Abstract Phosphorus recovery is a vital element for the circular economy. Wastewater, especially sewage sludge, shows great potential for recovering phosphate in the form of vivianite. This work focuses on studying the iron, phosphorus, and sulfur interactions at full-scale wastewater treatment plants (Viikinmaki, Finland and Seine Aval, France) with the goal of identifying unit processes with a potential for vivianite formation. Concentrations of iron(III) and iron(II), phosphorus, and sulfur were used to evaluate the reduction of iron and the formation potential of vivianite. Mossbauer spectroscopy and X-ray diffraction (XRD) analysis were used to confirm the presence of vivianite in various locations on sludge lines. The results show that the vivianite formation potential increases as the molar Fe:P ratio increases, the anaerobic sludge retention time increases, and the sulfate concentration decreases. The digester is a prominent location for vivianite recovery, but not the only one. This work gives valuable insights into the dynamic interrelations of iron, phosphorus, and sulfur in full-scale conditions. These results will support the understanding of vivianite formation and pave the way for an alternative solution for vivianite recovery for example in plants that do not have an anaerobic digester.
Author Keywords Vivianite; Phosphorus recovery; Mossbauer spectroscopy; Full-scale sampling; Pyrite
Index Keywords Index Keywords
Document Type Other
Open Access Open Access
Source Science Citation Index Expanded (SCI-EXPANDED)
EID WOS:001164934900001
WoS Category Environmental Sciences
Research Area Environmental Sciences & Ecology
PDF https://doi.org/10.1016/j.scitotenv.2023.169520
Similar atricles
Scroll