Knowledge Agora



Scientific Article details

Title Impact of Bio-Based (Tannins) and Nano-Scale (CNC) Additives on Bonding Properties of Synthetic Adhesives (PVAc and MUF) Using Chestnut Wood from Young Coppice Stands
ID_Doc 9037
Authors Marini, F; Zikeli, F; Corona, P; Vinciguerra, V; Manetti, MC; Portoghesi, L; Mugnozza, GS; Romagnoli, M
Title Impact of Bio-Based (Tannins) and Nano-Scale (CNC) Additives on Bonding Properties of Synthetic Adhesives (PVAc and MUF) Using Chestnut Wood from Young Coppice Stands
Year 2020
Published Nanomaterials, 10.0, 5
DOI 10.3390/nano10050956
Abstract Sustainability and ecotoxicity issues call for innovations regarding eco-friendly adhesives in the production of biocomposite wood materials, and solutions involving nano-scale and bio-based compounds represent a valid and promising target. One possible approach is to increase the performance of adhesives such as polyvinyl acetate (PVAc) or melamine-urea-formaldehyde (MUF) by means of nanoparticles in order to obtain a material with better mechanical and environmental resistance. When applying cellulose-based nanoparticles or tannin, the concept of a circular economy is successfully implemented into the forest/wood value chain, and chances are created to develop new value chains using byproducts of forestry operations. In this study, assortments coming from young sweet chestnut (Castanea sativa Mill.) coppice stands were utilized for the preparation of single lap joint assemblies using different commercial adhesives (PVAc, MUF) and cellulose nanocrystals (CNC) and tannin as additives. The results showed that addition of CNC and tannin to PVAc glue increased tensile shear strength in lap joint tests presenting a promising base for future tests regarding the addition of CNC and tannin in MUF or PVAc adhesive formulations. Unfortunately, the tested bio-based additives did not reveal the same encouraging results when tested in the wet state.
Author Keywords cellulose nanocrystals (CNC); tannin; new value chain; bioeconomy; short supply chain
Index Keywords Index Keywords
Document Type Other
Open Access Open Access
Source Science Citation Index Expanded (SCI-EXPANDED)
EID WOS:000540781800139
WoS Category Chemistry, Multidisciplinary; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied
Research Area Chemistry; Science & Technology - Other Topics; Materials Science; Physics
PDF https://www.mdpi.com/2079-4991/10/5/956/pdf?version=1589793302
Similar atricles
Scroll