Knowledge Agora



Scientific Article details

Title A Comprehensive Bioprocessing Approach to Foster Cheese Whey Valorization: On-Site β-Galactosidase Secretion for Lactose Hydrolysis and Sequential Bacterial Cellulose Production
ID_Doc 9481
Authors Lappa, IK; Kachrimanidou, V; Papadaki, A; Stamatiou, A; Ladakis, D; Eriotou, E; Kopsahelis, N
Title A Comprehensive Bioprocessing Approach to Foster Cheese Whey Valorization: On-Site β-Galactosidase Secretion for Lactose Hydrolysis and Sequential Bacterial Cellulose Production
Year 2021
Published Fermentation-Basel, 7.0, 3
DOI 10.3390/fermentation7030184
Abstract Cheese whey (CW) constitutes a dairy industry by-product, with considerable polluting impact, related mostly with lactose. Numerous bioprocessing approaches have been suggested for lactose utilization, however, full exploitation is hindered by strain specificity for lactose consumption, entailing a confined range of end-products. Thus, we developed a CW valorization process generating high added-value products (crude enzymes, nutrient supplements, biopolymers). First, the ability of Aspergillus awamori to secrete beta-galactosidase was studied under several conditions during solid-state fermentation (SSF). Maximum enzyme activity (148 U/g) was obtained at 70% initial moisture content after three days. Crude enzymatic extracts were further implemented to hydrolyze CW lactose, assessing the effect of hydrolysis time, temperature and initial enzymatic activity. Complete lactose hydrolysis was obtained after 36 h, using 15 U/mL initial enzymatic activity. Subsequently, submerged fermentations were performed with the produced hydrolysates as onset feedstocks to produce bacterial cellulose (5.6-7 g/L). Our findings indicate a novel approach to valorize CW via the production of crude enzymes and lactose hydrolysis, aiming to unfold the output potential of intermediate product formation and end-product applications. Likewise, this study generated a bio-based material to be further introduced in novel food formulations, elaborating and conforming with the basic pillars of circular economy.
Author Keywords cheese whey; Aspergillus awamori; beta-galactosidase; lactose hydrolysis; Acetobacter xylinum; bacterial cellulose
Index Keywords Index Keywords
Document Type Other
Open Access Open Access
Source Science Citation Index Expanded (SCI-EXPANDED)
EID WOS:000700234500001
WoS Category Biotechnology & Applied Microbiology; Food Science & Technology
Research Area Biotechnology & Applied Microbiology; Food Science & Technology
PDF https://www.mdpi.com/2311-5637/7/3/184/pdf?version=1631089476
Similar atricles
Scroll