Knowledge Agora



Similar Articles

Title Facile Oxidative Recovery of Manganese as Electrochemically Active MnO2 from Spent Lithium-Ion Battery Bioleachate
ID_Doc 13151
Authors Ranganathan, D; Roy, JJ; Cao, B; Srinivasan, M
Title Facile Oxidative Recovery of Manganese as Electrochemically Active MnO2 from Spent Lithium-Ion Battery Bioleachate
Year 2024
Published
Abstract In view of the rapidly growing volumes of spent lithium-ion battery (LIB) waste being generated annually, there is an urgent need to develop novel and green approaches to recover critical metals from spent LIBs in the form of technologically valuable materials for reincorporation back into battery manufacturing to achieve a circular economy for electronic waste. This study reports facile persulfate-mediated selective recovery of manganese as electrochemically active manganese dioxide (MnO2) from nickel manganese cobalt (NMC)-based spent LIB black mass (60 mesh) after processing via an environmentally friendly bioleaching technique. X-ray diffraction (XRD), scanning electron microscopy-energy-dispersive X-ray spectroscopy (SEM-EDX), and inductively coupled plasma-optical emission spectroscopy (ICP-OES) characterizations of recovered precipitate from optimized persulfate treatment of bioleachate solution using 0.3 M sodium persulfate (Na2S2O8) have confirmed it to be MnO2 of 90% purity comprising delta-MnO2 and gamma-MnO2 phases, possessing distinct spherical nanoflower morphology. Electrochemical evaluation studies of the bioleachate recovered MnO2 for aqueous zinc battery application revealed that bioleachate MnO2 demonstrated a comparable discharge capacity of 145 mAh/g in alkaline electrolyte as well as much superior cycling performance (81% retention of initial discharge capacity of 149 mAh/g) for up to 80 cycles in a mildly acidic ZnSO4-based electrolyte than commercial MnO2. The oxidative recovery of Mn as MnO2 using sodium persulfate from spent LIB bioleachates is promising for the selective removal of Mn from battery leachates and upcycling of Mn from end-of-life LIBs into high-purity MnO2 to serve as cathodes for aqueous zinc battery applications.
PDF

Similar Articles

ID Score Article
7948 Sales, JMD; Junior, ABB; Gobo, LA; Kumoto, EA; Espinos, DCR; Tenório, JAS Precipitation of manganese by ozone from hydrometallurgical recycling process of lithium-ion batteries(2024)
26363 El Mounafia, N; Aannir, M; Hakkou, R; Zaabout, A; Saadoune, I Comparative performance analysis of NMC cathodes elaborated from recovered and commercial raw materials: A low-temperature molten salt approach for extracting critical metals from end-of-life lithium-ion batteries(2023)
12710 Wittkowski, A; Schirmer, T; Qiu, H; Goldmann, D; Fittschen, UEA Speciation of Manganese in a Synthetic Recycling Slag Relevant for Lithium Recycling from Lithium-Ion Batteries(2021)Metals, 11.0, 2
26849 Nair, AV; Jayasree, SS; Baji, DS; Nair, S; Santhanagopalan, D Environment-friendly acids for leaching transition metals from spent-NMC532 cathode and sustainable conversion to potential anodes(2024)Rsc Sustainability, 2, 8
27408 Chang, D; Yang, SH; Shi, PF; Jie, YF; Hu, F; Fang, G; Chen, YM Selective recovery of lithium and efficient leaching of transition metals from spent LiNixCoyMnzO2 batteries based on a synergistic roasting process(2022)
9284 Chan, KH; Anawati, J; Malik, M; Azimi, G Closed-Loop Recycling of Lithium, Cobalt, Nickel, and Manganese from Waste Lithium-Ion Batteries of Electric Vehicles(2021)Acs Sustainable Chemistry & Engineering, 9.0, 12
30049 Rambau, K; Musyoka, NM; Palaniyandy, N; Manyala, N Manganese-Based Metal Organic Framework from Spent Li-Ion Batteries and its Electrochemical Performance as Anode Material in Li-ion Battery(2021)Journal Of The Electrochemical Society, 168.0, 1
9149 Hu, XF; Robles, A; Vikström, T; Väänänen, P; Zackrisson, M; Ye, GZ A novel process on the recovery of zinc and manganese from spent alkaline and zinc-carbon batteries(2021)
11119 Mohanty, A; Sukla, LB; Nayak, S; Devi, N Selective recovery and intensification of Mn from spent LiMn2O4 using sulfuric acid as lixiviant and Na-D2EHPA as extractant(2022)Geosystem Engineering, 25, 5-6
25565 Liu, FP; Peng, C; Porvali, A; Wang, ZL; Wilson, BP; Lundström, M Synergistic Recovery of Valuable Metals from Spent Nickel-Metal Hydride Batteries and Lithium-Ion Batteries(2019)Acs Sustainable Chemistry & Engineering, 7, 19
Scroll