Knowledge Agora



Similar Articles

Title An Integrated Approach to Using Sheep Wool as a Fibrous Material for Enhancing Strength and Transport Properties of Concrete Composites
ID_Doc 13327
Authors Alyousef, R; Mohammadhosseini, H; Ebid, AAK; Alabduljabbar, H
Title An Integrated Approach to Using Sheep Wool as a Fibrous Material for Enhancing Strength and Transport Properties of Concrete Composites
Year 2022
Published Materials, 15, 5
Abstract An important goal to achieve sustainable development is to use raw materials that are easily recyclable and renewable, locally available, and eco-friendly. Sheep wool, composed of 60% animal protein fibers, 10% fat, 15% moisture, 10% sheep sweat, and 5% contaminants on average, is an easily recyclable, easily renewable, and environmentally friendly source of raw material. In this study, slump testing, compressive and flexural strengths, ultrasonic pulse velocity, sorptivity, and chloride penetration tests were investigated to assess the influence of wool fibers on the strength and transport properties of concrete composites. Ordinary Portland cement was used to make five concrete mixes incorporating conventional wool fibers (WFs) ranging from 0.5 to 2.5% and a length of 70 mm. The wool fibers were modified (MWFs) via a pre-treatment technique, resulting in five different concrete compositions with the same fiber content. The addition of WF and MWF to fresh concrete mixes resulted in a decrease in slump values. The compressive strength of concrete was reduced when wool fibers were added to the mix. The MWF mixes, however, achieved compressive strength values of more than 30 MPa after a 90-day curing period. Furthermore, by including both WF and MWF, the flexural strength was higher than that of plain concrete. In addition, adding fibers with volume fractions of up to 2% reduced the concrete composite's sorptivity rate and chloride penetration depths for both WF and MWF content mixes. Consequently, biomass waste like sheep wool could be recycled and returned to the field following the circular economy and waste valorization principles.
PDF https://www.mdpi.com/1996-1944/15/5/1638/pdf?version=1645703494

Similar Articles

ID Score Article
13835 Idrees, M; Saeed, F; Farooq, Z; Köksal, F; Shi, JY Production of waste carpet fiber-reinforced concrete as sustainable material(2023)
8227 Parlato, MCM; Rivera-Gómez, C; Porto, SMC Reuse of livestock waste for the reinforcement of rammed-earth materials: investigation on mechanical performances(2023)Journal Of Agricultural Engineering, 54.0, 2
13040 Mohammadhosseini, H; Alyousef, R; Tahir, MM Towards Sustainable Concrete Composites through Waste Valorisation of Plastic Food Trays as Low-Cost Fibrous Materials(2021)Sustainability, 13.0, 4
18601 Tran, NP; Gunasekara, C; Law, DW; Houshyar, S; Setunge, S Repurposing of blended fabric waste for sustainable cement-based composite: Mechanical and microstructural performance(2023)
10732 Mohammadhosseini, H; Ngian, SP; Alyousef, R; Tahir, MM Synergistic effects of waste plastic food tray as low-cost fibrous materials and palm oil fuel ash on transport properties and drying shrinkage of concrete(2021)
6106 Tariq, H; Siddique, RMA; Shah, SAR; Azab, M; Attiq-Ur-Rehman; Qadeer, R; Ullah, MK; Iqbal, F Mechanical Performance of Polymeric ARGF-Based Fly Ash-Concrete Composites: A Study for Eco-Friendly Circular Economy Application(2022)Polymers, 14, 9
15752 Gamage, N; Gunasekara, C; Law, DW; Houshyar, S; Setunge, S; Cwirzen, A Enhancement of concrete performance and sustainability through incorporation of diverse waste carpet fibres(2024)
21917 Balea, A; Fuente, E; Monte, MC; Blanco, A; Negro, C Recycled Fibers for Sustainable Hybrid Fiber Cement Based Material: A Review(2021)Materials, 14.0, 9
9842 Tran, NP; Gunasekara, C; Law, DW; Houshyar, S; Setunge, S Utilization of Recycled Fabric-Waste Fibers in Cementitious Composite(2023)Journal Of Materials In Civil Engineering, 35.0, 1
4966 Alhazmi, H; Shah, SAR; Anwar, MK; Raza, A; Ullah, MK; Iqbal, F Utilization of Polymer Concrete Composites for a Circular Economy: A Comparative Review for Assessment of Recycling and Waste Utilization(2021)Polymers, 13, 13
Scroll