Knowledge Agora



Similar Articles

Title Pore volume upgrade of biochar from spent coffee grounds by sodium bicarbonate during torrefaction
ID_Doc 13429
Authors Chen, WH; Du, JT; Lee, KT; Ong, HC; Park, YK; Huang, CC
Title Pore volume upgrade of biochar from spent coffee grounds by sodium bicarbonate during torrefaction
Year 2021
Published
Abstract Y A novel approach for upgrading the pore volume of biochar at low temperatures using a green additive of sodium bicarbonate (NaHCO3) is developed in this study. The biochar was produced from spent coffee grounds (SCGs) torrefied at different temperatures (200-300 degrees C) with different residence times (30-60 min) and NaHCO3 concentrations (0-8.3 wt%). The results reveal that the total pore volume of biochar increases with rising temperature, residence time, or NaHCO3 aqueous solution concentration, whereas the bulk density has an opposite trend. The specific surface area and total pore volume of poreforming SCG from 300 degrees C torrefaction for 60 min with an 8.3 wt% NaHCO3 solution (300-TP-SCG) are 42.050 m(2) g(-1) and 0.1389 cm3. g(-1), accounting for the improvements of 141% and 76%, respectively, compared to the parent SCG. The contact angle (126 degrees) and water activity (0.48 aw) of 300-TP-SCG reveal that it has long storage time. The CO2 uptake capacity of 300-TP-SCG is 0.32 mmol g(-1), rendering a 39% improvement relative to 300-TSCG, namely, SCG torrefied at 300 degrees C for 60 min. 300-TP-SCG has higher HHV (28.31 MJ.kg(-1)) and lower ignition temperature (252 degrees C). Overall, it indicates 300-TP-SCG is a potential fuel substitute for coal. This study has successfully produced mesoporous biochar at low temperatures to fulfill "3E", namely, energy (biofuel), environment (biowaste reuse solid waste), and circular economy (bioadsorbent). (C) 2021 Elsevier Ltd. All rights reserved.
PDF

Similar Articles

ID Score Article
14387 Lee, KT; Du, JT; Chen, WH; Ubando, AT; Lee, KT Green additive to upgrade biochar from spent coffee grounds by torrefaction for pollution mitigation(2021)
14431 Stylianou, M; Christou, A; Dalias, P; Polycarpou, P; Michael, C; Agapiou, A; Papanastasiou, P; Fatta-Kassinos, D Physicochemical and structural characterization of biochar derived from the pyrolysis of biosolids, cattle manure and spent coffee grounds(2020)Journal Of The Energy Institute, 93, 5
26419 Yuan, XZ; Wang, JY; Deng, S; Dissanayake, PD; Wang, SJ; You, SM; Yip, ACK; Li, SJ; Jeong, Y; Tsang, DCW; Ok, YS Sustainable Food Waste Management: Synthesizing Engineered Biochar for CO2 Capture(2022)
13056 Lee, KT; Tsai, JY; Hoang, AT; Chen, WH; Gunarathne, DS; Tran, KQ; Selvarajoo, A; Goodarzi, V Energy-saving drying strategy of spent coffee grounds for co-firing fuel by adding biochar for carbon sequestration to approach net zero(2022)
22093 Lee, KT; Cheng, CL; Lee, DS; Chen, WH; Vo, DVN; Ding, L; Lam, SS Spent coffee grounds biochar from torrefaction as a potential adsorbent for spilled diesel oil recovery and as an alternative fuel(2022)
10170 Zhang, YH; Qin, JD; Yi, YL Biochar and hydrochar derived from freshwater sludge: Characterization and possible applications(2021)
13058 Carnier, R; Coscione, AR; de Abreu, CA; Melo, LCA; da Silva, AF Cadmium and lead adsorption and desorption by coffee waste-derived biochars(2022)
21767 Wystalska, K; Kwarciak-Kozlowska, A Utilization of Digestate from Agricultural and Food Waste for the Production of Biochar Used to Remove Methylene Blue(2023)Sustainability, 15.0, 20
7035 Zhu, H; An, Q; Nasir, ASM; Babin, A; Saucedo, SL; Vallenas, A; Li, LRT; Baldwin, SA; Lau, A; Bi, XT Emerging applications of biochar: A review on techno-environmental-economic aspects(2023)
12804 Carnier, R; Coscione, AR; Delaqua, D; de Abreu, CA Coffee industry waste-derived biochar: characterization and agricultural use evaluation according to Brazilian legislation(2021)
Scroll