Knowledge Agora



Similar Articles

Title A Framework and Baseline for the Integration of a Sustainable Circular Economy in Offshore Wind
ID_Doc 1394
Authors Velenturf, APM
Title A Framework and Baseline for the Integration of a Sustainable Circular Economy in Offshore Wind
Year 2021
Published Energies, 14, 17
Abstract Circular economy and renewable energy infrastructure such as offshore wind farms are often assumed to be developed in synergy as part of sustainable transitions. Offshore wind is among the preferred technologies for low-carbon energy. Deployment is forecast to accelerate over ten times faster than onshore wind between 2021 and 2025, while the first generation of offshore wind turbines is about to be decommissioned. However, the growing scale of offshore wind brings new sustainability challenges. Many of the challenges are circular economy-related, such as increasing resource exploitation and competition and underdeveloped end-of-use solutions for decommissioned components and materials. However, circular economy is not yet commonly and systematically applied to offshore wind. Circular economy is a whole system approach aiming to make better use of products, components and materials throughout their consecutive lifecycles. The purpose of this study is to enable the integration of a sustainable circular economy into the design, development, operation and end-of-use management of offshore wind infrastructure. This will require a holistic overview of potential circular economy strategies that apply to offshore wind, because focus on no, or a subset of, circular solutions would open the sector to the risk of unintended consequences, such as replacing carbon impacts with water pollution, and short-term private cost savings with long-term bills for taxpayers. This study starts with a systematic review of circular economy and wind literature as a basis for the coproduction of a framework to embed a sustainable circular economy throughout the lifecycle of offshore wind energy infrastructure, resulting in eighteen strategies: design for circular economy, data and information, recertification, dematerialisation, waste prevention, modularisation, maintenance and repair, reuse and repurpose, refurbish and remanufacturing, lifetime extension, repowering, decommissioning, site recovery, disassembly, recycling, energy recovery, landfill and re-mining. An initial baseline review for each strategy is included. The application and transferability of the framework to other energy sectors, such as oil and gas and onshore wind, are discussed. This article concludes with an agenda for research and innovation and actions to take by industry and government.
PDF

Similar Articles

ID Score Article
2377 Shafiee, M Circular Economy and Autonomous Remanufacturing for End-of-Life Offshore Wind Turbines(2024)
5224 Mendoza, JMF; Gallego-Schmid, A; Velenturf, APM; Jensen, PD; Ibarra, D Circular economy business models and technology management strategies in the wind industry: Sustainability potential, industrial challenges and opportunities(2022)
22645 Mendoza, JMF; Ibarra, D Technology-enabled circular business models for the hybridisation of wind farms: Integrated wind and solar energy, power-to-gas and power-to-liquid systems(2023)
28811 Mendoza, JMF; Pigosso, DCA How ready is the wind energy industry for the circular economy?(2023)
3366 Jensen, PD; Purnell, P; Velenturf, APM Highlighting the need to embed circular economy in low carbon infrastructure decommissioning: The case of offshore wind(2020)
22072 Ramos, A; Magalhaes, F; Neves, D; Gonçalves, N; Baptista, A; Mata, T; Correia, N Wind energy sustainability in Europe-A review of knowledge gaps, opportunities and circular strategies(2023)Green Finance, 5.0, 4
28287 Woo, SM; Whale, J A mini-review of end-of-life management of wind turbines: Current practices and closing the circular economy gap(2022)Waste Management & Research, 40.0, 12
3964 Tyurkay, A; Kirkelund, GM; Lima, ATM State-of-the-art circular economy practices for end-of-life wind turbine blades for use in the construction industry(2024)
28594 Diez-Cañamero, B; Mendoza, JMF Circular economy performance and carbon footprint of wind turbine blade waste management alternatives(2023)
3876 Schoden, F; Siebert, A; Keskin, A; Herzig, K; Straus, M; Schwenzfeier-Hellkamp, E Building a Wind Power Plant from Scrap and Raising Public Awareness for Renewable Energy Technology in a Circular Economy(2020)Sustainability, 12, 1
Scroll