Knowledge Agora



Similar Articles

Title Bioelectrochemical systems for energy storage: A scaled-up power-to-gas approach
ID_Doc 14743
Authors Ceballos-Escalera, A; Molognoni, D; Bosch-Jimenez, P; Shahparasti, M; Bouchakour, S; Luna, A; Guisasola, A; Borràs, E; Della Pirriera, M
Title Bioelectrochemical systems for energy storage: A scaled-up power-to-gas approach
Year 2020
Published
Abstract The development and implementation of energy storage solutions is essential for the sustainability of renewable energy penetration in the electrical system. In this regard, power-to-gas technologies are useful for seasonal, high-capacity energy storage. Bioelectrochemical systems for electromethanogenesis (EMG-BES) represent an additional power-to-gas technology to the existing chemical and biological methanation. EMG-BES process can be retrofitted in traditional anaerobic digesters, with advantages in terms of biologic process stability and high-quality biogas production. Nowadays, there are no reported studies of scaled-up EMG-BES plants for energy storage. The present work describes the setup and operation of a medium-scale EMG-BES prototype for power-togas, storing energy in the form of biomethane. The prototype was built by stacking 45 EMG-BES cells, accounting for a total volume of 32 L. It was continuously fed with 10 L day(-1) municipal wastewater, and it was long-term operated at different voltage and temperature ranges. A steady-state current density demand of 0.5 Am-2 was achieved at 32 degrees C while producing 4.4 L CH4 m(-2) d(-1) and removing 70% of the initial organic matter present in wastewater. Microbial competition between electro-active bacteria and acetoclastic methanogens was observed. Energy storage efficiency was estimated around 42-47%, analyzing surplus CH4 production obtained when applying voltage to the stack. A first order electric model was calculated, based on the results of a series of electrical characterization tests. The model may be used in the future to design the converter for EMG-BES plant connection to the electrical grid. The obtained results show that energy storage based on EMG-BES technology is possible, as well as its future potential, mixing renewable power overproduction, biomethane generation and wastewater treatment under the circular economy umbrella.
PDF

Similar Articles

ID Score Article
13932 Mukherjee, A; Zaveri, P; Patel, R; Shah, MT; Munshi, NS Optimization of microbial fuel cell process using a novel consortium for aromatic hydrocarbon bioremediation and bioelectricity generation(2021)
14709 Sonawane, JM; Mahadevan, R; Pandey, A; Greener, J Recent progress in microbial fuel cells using substrates from diverse sources(2022)Heliyon, 8, 12
19755 Koul, Y; Devda, V; Varjani, S; Guo, WS; Ngo, HH; Taherzadeh, MJ; Chang, JS; Wong, JWC; Bilal, M; Kim, SH; Bui, XT; Parra-Saldívar, R Microbial electrolysis: a promising approach for treatment and resource recovery from industrial wastewater(2022)Bioengineered, 13.0, 4
7241 Roy, M; Aryal, N; Zhang, YF; Patil, SA; Pant, D Technological progress and readiness level of microbial electrosynthesis and electrofermentation for carbon dioxide and organic wastes valorization(2022)
26305 Salar-García, MJ; Ortiz-Martínez, VM; Sánchez-Segado, S; Sánchez, RV; López, AS; Blanco, LJL; Godínez-Seoane, C Sustainable Production of Biofuels and Biochemicals via Electro-Fermentation Technology(2024)Molecules, 29, 4
29349 Jensen, LS; Kaul, C; Juncker, NB; Thomsen, MH; Chaturvedi, T Biohydrogen Production in Microbial Electrolysis Cells Utilizing Organic Residue Feedstock: A Review(2022)Energies, 15.0, 22
10117 Quraishi, M; Wani, K; Pandit, S; Gupta, PK; Rai, AK; Lahiri, D; Jadhav, DA; Ray, RR; Jung, SP; Thakur, VK; Prasad, R Valorisation of CO2 into Value-Added Products via Microbial Electrosynthesis (MES) and Electro-Fermentation Technology(2021)Fermentation-Basel, 7.0, 4
15410 Rodin, V; Zeilerbauer, L; Lindorfer, J; Paulik, C; Finger, D Life cycle assessment of a novel electrocatalytic process for the production of bulk chemical ethylene oxide from biogenic CO2(2022)
3744 Gautam, R; Ress, N; Wilckens, RS; Ghosh, UK Hydrogen production in microbial electrolysis cell and reactor digestate valorization for biochar - a noble attempt towards circular economy(2024)
Scroll