Knowledge Agora



Similar Articles

Title Early-Stage Recovery of Lithium from Tailored Thermal Conditioned Black Mass Part I: Mobilizing Lithium via Supercritical CO2-Carbonation
ID_Doc 14824
Authors Schwich, L; Schubert, T; Friedrich, B
Title Early-Stage Recovery of Lithium from Tailored Thermal Conditioned Black Mass Part I: Mobilizing Lithium via Supercritical CO2-Carbonation
Year 2021
Published Metals, 11, 2
Abstract In the frame of global demand for electrical storage based on lithium-ion batteries (LIBs), their recycling with a focus on the circular economy is a critical topic. In terms of political incentives, the European legislative is currently under revision. Most industrial recycling processes target valuable battery components, such as nickel and cobalt, but do not focus on lithium recovery. Especially in the context of reduced cobalt shares in the battery cathodes, it is important to investigate environmentally friendly and economic and robust recycling processes to ensure lithium mobilization. In this study, the method early-stage lithium recovery ("ESLR") is studied in detail. Its concept comprises the shifting of lithium recovery to the beginning of the chemo-metallurgical part of the recycling process chain in comparison to the state-of-the-art. In detail, full NCM (Lithium Nickel Manganese Cobalt Oxide)-based electric vehicle cells are thermally treated to recover heat-treated black mass. Then, the heat-treated black mass is subjected to an H2O-leaching step to examine the share of water-soluble lithium phases. This is compared to a carbonation treatment with supercritical CO2, where a higher extent of lithium from the heat-treated black mass can be transferred to an aqueous solution than just by H2O-leaching. Key influencing factors on the lithium yield are the filter cake purification, the lithium separation method, the solid/liquid ratio, the pyrolysis temperature and atmosphere, and the setup of autoclave carbonation, which can be performed in an H2O-environment or in a dry autoclave environment. The carbonation treatments in this study are reached by an autoclave reactor working with CO2 in a supercritical state. This enables selective leaching of lithium in H2O followed by a subsequent thermally induced precipitation as lithium carbonate. In this approach, treatment with supercritical CO2 in an autoclave reactor leads to lithium yields of up to 79%.
PDF

Similar Articles

ID Score Article
24867 Pavón, S; Kaiser, D; Mende, R; Bertau, M The COOL-Process-A Selective Approach for Recycling Lithium Batteries(2021)Metals, 11, 2
11073 Cao, Y; Li, JF; Ji, HC; Wei, XJ; Zhou, GM; Cheng, HM A review of direct recycling methods for spent lithium-ion batteries(2024)
10370 Zhang, YS; Schneider, K; Qiu, H; Zhu, HL A perspective of low carbon lithium-ion battery recycling technology(2022)
9284 Chan, KH; Anawati, J; Malik, M; Azimi, G Closed-Loop Recycling of Lithium, Cobalt, Nickel, and Manganese from Waste Lithium-Ion Batteries of Electric Vehicles(2021)Acs Sustainable Chemistry & Engineering, 9.0, 12
15512 Swain, B Recovery and recycling of lithium: A review(2017)
25010 Park, S; Jung, S; Kwon, D; Beak, M; Kwon, EE; Kwon, K Carbothermic reduction of spent Lithium-Ion batteries using CO2 as reaction medium(2022)
21108 Schwich, L; Friedrich, B Environmentally Friendly Recovery of Lithium from Lithium-Sulfur Batteries(2022)Metals, 12.0, 7
26363 El Mounafia, N; Aannir, M; Hakkou, R; Zaabout, A; Saadoune, I Comparative performance analysis of NMC cathodes elaborated from recovered and commercial raw materials: A low-temperature molten salt approach for extracting critical metals from end-of-life lithium-ion batteries(2023)
6531 Cattaneo, P; D'Aprile, F; Kapelyushko, V; Mustarelli, P; Quartarone, E Supercritical CO2 technology for the treatment of end-of-life lithium-ion batteries(2024)
4416 Mossali, E; Picone, N; Gentilini, L; Rodrìguez, O; Pérez, JM; Colledani, M Lithium-ion batteries towards circular economy: A literature review of opportunities and issues of recycling treatments(2020)
Scroll