Knowledge Agora



Similar Articles

Title Closing the Carbon Loop in the Circular Plastics Economy
ID_Doc 17081
Authors Schirmeister, CG; Mülhaupt, R
Title Closing the Carbon Loop in the Circular Plastics Economy
Year 2022
Published Macromolecular Rapid Communications, 43, 13
Abstract Today, plastics are ubiquitous in everyday life, problem solvers of modern technologies, and crucial for sustainable development. Yet the surge in global demand for plastics of the growing world population has triggered a tidal wave of plastic debris in the environment. Moving from a linear to a zero-waste and carbon-neutral circular plastic economy is vital for the future of the planet. Taming the plastic waste flood requires closing the carbon loop through plastic reuse, mechanical and molecular recycling, carbon capture, and use of the greenhouse gas carbon dioxide. In the quest for eco-friendly products, plastics do not need to be reinvented but tuned for reuse and recycling. Their full potential must be exploited regarding energy, resource, and eco-efficiency, waste prevention, circular economy, climate change mitigation, and lowering environmental pollution. Biodegradation holds promise for composting and bio-feedstock recovery, but it is neither the Holy Grail of circular plastics economy nor a panacea for plastic littering. As an alternative to mechanical downcycling, molecular recycling enables both closed-loop recovery of virgin plastics and open-loop valorization, producing hydrogen, fuels, refinery feeds, lubricants, chemicals, and carbonaceous materials. Closing the carbon loop does not create a Perpetuum Mobile and requires renewable energy to achieve sustainability.
PDF https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/marc.202200247

Similar Articles

ID Score Article
24534 von Vacano, B; Mangold, H; Seitz, C The Time is ripe Plastics in the Cycle(2021)Chemie In Unserer Zeit, 55, 6
889 Bucknall, DG Plastics as a materials system in a circular economy(2020)Philosophical Transactions Of The Royal Society A-Mathematical Physical And Engineering Sciences, 378, 2176
16868 Sheldon, RA; Norton, M Green chemistry and the plastic pollution challenge: towards a circular economy(2020)Green Chemistry, 22, 19
13975 Amulya, K; Katakojwala, R; Ramakrishna, S; Mohan, SV Low carbon biodegradable polymer matrices for sustainable future(2021)
4117 Elgarahy, AM; Priya, AK; Mostafa, HY; Zaki, EG; Elsaeed, SM; Muruganandam, M; Elwakeel, KZ Toward a circular economy: Investigating the effectiveness of different plastic waste management strategies: A comprehensive review(2023)Journal Of Environmental Chemical Engineering, 11, 5
21380 Skoczinski, P; Krause, L; Raschka, A; Dammer, L; Carus, M Current status and future development of plastics: Solutions for a circular economy and limitations of environmental degradation(2021)
20486 Mangold, H; von Vacano, B The Frontier of Plastics Recycling: Rethinking Waste as a Resource for High-Value Applications(2022)Macromolecular Chemistry And Physics, 223, 13
2044 Kawashima, N; Yagi, T; Kojima, K How Do Bioplastics and Fossil-Based Plastics Play in a Circular Economy?(2019)Macromolecular Materials And Engineering, 304, 9
21827 Klemes, JJ; Fan, YV; Jiang, P Plastics: friends or foes? The circularity and plastic waste footprint(2021)Energy Sources Part A-Recovery Utilization And Environmental Effects, 43.0, 13
20669 Pandey, KP; Jha, UR; Kushwaha, J; Priyadarsini, M; Meshram, SU; Dhoble, AS Practical ways to recycle plastic: current status and future aspects(2023)Journal Of Material Cycles And Waste Management, 25, 3
Scroll