Knowledge Agora



Similar Articles

Title Highly effective water hyacinth (Eichhornia crassipes) waste-based functionalized sustainable green adsorbents for antibiotic remediation from wastewater
ID_Doc 18582
Authors Kabir, MM; Alam, F; Akter, MM; Gilroyed, BH; Didar-ul-Alam, M; Tijing, L; Shon, HK
Title Highly effective water hyacinth (Eichhornia crassipes) waste-based functionalized sustainable green adsorbents for antibiotic remediation from wastewater
Year 2022
Published
Abstract Azithromycin (AZIM) is considered as one of the most frequently prescribed antibiotics (ABs) in the world by medical professionals. This study explored, two novel, cheap and environmentally beneficial adsorbents i.e., alkali treated water hyacinth powder (AT-WHP) and graphene oxide-water hyacinth-polyvinyl alcohol (GO-WH-PVA) composite, fabricated from water hyacinth (Eichhornia crassipes) waste to remediate AZIM from wastewater. Biosorption experiments were performed by batch and packed-bed column studies and the adsorbents were characterized using various instrumental methods. The morpho-chemical profile of the adsorbents suggested noteworthy AZIM adsorption. AZIM adsorption data can be reasonably explained by pseudo second order (PSO) kinetic model with maximum regression coefficient (R-2 > 0.99) and lowest Marquardt's present standard deviation (MPSD) and root mean squared error (RMSE) values. The isotherm models recommended Langmuir and Temkin to be the best-fitted, providing highest regression coefficient and lowest error values. Conferring to Langmuir model, the theoretical highest adsorption potentials (q(max)) were accounted to be 244.498 and 338.115 mg/g for AT-WHP and GO-WH-PVA, correspondingly, very close to experimental values (q(e), exp). AZIM adsorption processes were governed by the chemisorption mechanisms. The adsorbents had excellent regeneration potential and could be reused several times. In order to scale-up application of the adsorbents, performance of a 100 L packed-bed reactor was assessed and a breakthrough time of adsorption for GO-WH-PVA was 15 min in 5000 mg/L AZIM concentration. Thus, the absorbents synthesized in this study can be considered highly effective at removal of AZIM from wastewater.
PDF

Similar Articles

ID Score Article
16394 Devre, PV; Gore, AH Agro-Waste Valorization into Carbonaceous Eco-Hydrogel: A Circular Economy and Zero Waste Tactic for Doxorubicin Removal in Water/Wastewater(2023)Langmuir, 40, 1
13714 Stylianou, M; Christou, A; Michael, C; Agapiou, A; Papanastasiou, P; Fatta-Kassinos, D Adsorption and removal of seven antibiotic compounds present in water with the use of biochar derived from the pyrolysis of organic waste feedstocks(2021)Journal Of Environmental Chemical Engineering, 9, 5
14569 Sousa, ML; Otero, M; Gil, MV; Ferreira, P; Esteves, VI; Calisto, V Insights into matrix and competitive effects on antibiotics removal from wastewater by activated carbon produced from brewery residues(2023)
27489 Barroso, TLCT; Castro, LEN; Lima, JRD; Colpini, LMS; Rostagno, MA; Forster-Carneiro, T Synthesis and Optimization of biosorbent using jabuticaba peel (Myrciaria cauliflora) for anthocyanin recovery through adsorption(2024)Adsorption-Journal Of The International Adsorption Society, 30.0, 6
6313 Li, Y; Taggart, MA; McKenzie, C; Zhang, ZL; Lu, YL; Pap, S; Gibb, S Utilizing low-cost natural waste for the removal of pharmaceuticals from water: Mechanisms, isotherms and kinetics at low concentrations(2019)
15098 Pal, S; Ahamed, Z; Pal, P Removal of antibiotics and pharmaceutically active compounds from water Environment: Experiments towards industrial scale up(2022)
8803 GadelHak, Y; Salama, E; Tawab, SA; Mouhmed, EA; Alkhalifah, DHM; Hozzein, WN; Mohaseb, M; Mahmoud, RK; Amin, RM Waste Valorization of a Recycled ZnCoFe Mixed Metal Oxide/ Ceftriaxone Waste Layered Nanoadsorbent for Further Dye Removal(2022)Acs Omega, 7.0, 48
9956 Simón, D; Palet, C; Costas, A; Cristóbal, A Agro-Industrial Waste as Potential Heavy Metal Adsorbents and Subsequent Safe Disposal of Spent Adsorbents(2022)Water, 14.0, 20
19733 Jadaa, W Wastewater Treatment Utilizing Industrial Waste Fly Ash as a Low-Cost Adsorbent for Heavy Metal Removal: Literature Review(2024)Clean Technologies, 6.0, 1
Scroll