Knowledge Agora



Similar Articles

Title Feasibility study on the use of recycled materials for prototyping purposes: A comparative study based on the tensile strength
ID_Doc 18891
Authors López, VM; Carou, D; Cruz, FA
Title Feasibility study on the use of recycled materials for prototyping purposes: A comparative study based on the tensile strength
Year 2023
Published Proceedings Of The Institution Of Mechanical Engineers Part B-Journal Of Engineering Manufacture, 237.0, 5
Abstract 3D printing is considered a disruptive technology and it continues to expand the design space boundaries for prototypes and final products. Sustainability is one of the major objectives for manufacturing, and the use of recycled materials is becoming a relevant sustainability strategy, particularly for improving material resource efficiency. This paper evaluates the suitability of substituting virgin polylactic acid (PLA) for recycled PLA. It describes an experimental plan divided into three phases to evaluate the specimens' tensile strength. The results showed that recycled PLA could be used thanks to a similar tensile strength, even though this is slightly lower than that of the virgin material. In addition, the infill density and the orientation parameters played a major role in the response. As the infill density approaches 100%, both the maximum load and tensile strength increase sharply. However, when using an infill density of 40%, on average, the specimen resists 58.07% of the maximum load. In addition, because of the anisotropy, the horizontal orientation allowed attaining a higher tensile strength while the vertical orientation provided a lower value. These are relevant insights for prescriptions of the 3D-printing parameters guaranteeing minimum tensile strength in prototyping.
PDF https://zenodo.org/records/7764252/files/L%C3%B3pez%20et%20al.%20-%202022%20-%20Feasibility%20study%20on%20the%20use%20of%20recycled%20materials.pdf

Similar Articles

ID Score Article
22353 Hasan, MR; Davies, IJ; Paramanik, A; John, M; Biswas, WK Fabrication and Characterisation of Sustainable 3D-Printed Parts Using Post-Consumer PLA Plastic and Virgin PLA Blends(2024)Processes, 12.0, 4
13228 Agbakoba, VC; Webb, N; Jegede, E; Phillips, R; Hlangothi, SP; John, MJ Mechanical Recycling of Waste PLA Generated From 3D Printing Activities: Filament Production and Thermomechanical Analysis(2024)Macromolecular Materials And Engineering, 309, 8
26493 Dash, A; Kabra, S; Misra, S; Hrishikeshan, G; Singh, RP; Patterson, AE; Chadha, U; Rajan, AJ; Hirpha, BB Comparative property analysis of fused filament fabrication PLA using fresh and recycled feedstocks(2022)Materials Research Express, 9, 11
28237 Kuclourya, T; Monroy, R; Ahmad, R Design of experiments to compare the reprocessing effect with Fused Deposition Modeling printing parameters on mechanical properties of Polylactic Acid specimens towards circular economy(2023)Progress In Rubber Plastics And Recycling Technology, 39.0, 2
6454 Liu, HD; Gong, K; Portela, A; Chyzna, V; Yan, GM; Cao, Z; Dunbar, R; Chen, YY Investigation of distributed recycling of polylactic acid over multiple generations via the granule-based material extrusion process(2024)
28570 Simon, Z; Stojcevski, F; Dharmasiri, B; Henderson, LC; Amini, N Circular economy-driven additive manufacturing: A model for recycling PLA/copper composites through multi-extrusion processing(2024)
14079 Alexandre, A; Sanchez, FCA; Boudaoud, H; Camargo, M; Pearce, JM Mechanical Properties of Direct Waste Printing of Polylactic Acid with Universal Pellets Extruder: Comparison to Fused Filament Fabrication on Open-Source Desktop Three-Dimensional Printers(2020)3D Printing And Additive Manufacturing, 7, 5
14680 Jayawardane, H; Davies, IJ; Gamage, JR; John, M; Biswas, WK Additive manufacturing of recycled plastics: a 'techno-eco-efficiency' assessment(2023)International Journal Of Advanced Manufacturing Technology, 126, 3-4
28035 Fico, D; Corcione, CE; Acocella, MR; Rizzo, D; De Carolis, V; Maffezzoli, A Thermal stabilization of recycled PLA for 3D printing by addition of charcoal(2023)Journal Of Thermal Analysis And Calorimetry, 148.0, 23
18506 Nagengast, N; Bay, C; Döpper, F; Schmidt, HW; Neuber, C Thermo-Mechanical Recyclability of Additively Manufactured Polypropylene and Polylactic Acid Parts and Polypropylene Support Structures(2023)Polymers, 15.0, 10
Scroll