Knowledge Agora



Similar Articles

Title C. vulgaris growth batch tests using winery waste digestate as promising raw material for biodiesel and stearin production
ID_Doc 19082
Authors Scarponi, P; Izzo, FC; Bravi, M; Cavinato, C
Title C. vulgaris growth batch tests using winery waste digestate as promising raw material for biodiesel and stearin production
Year 2021
Published
Abstract The recovery of high added value compound from waste stream is fundamental to keep biotechnological processes sustainable. In this study, anaerobic digestion of two highly produced organic waste was integrated with microalgae-based processes both to treat liquid digestate and recover high value compounds. Chlorella vulgaris growth was assessed for lipids accumulation and subsequent recovery, using two types of digestate: organic waste and sewage sludge digestate (DIG-OFMSW) and wine lees digestate (DIG-WL). Growth tests were carried out in batch mode and results showed a slightly higher final biomass concentration from DIG-WL (1.36 +/- 0.09 g l(-1)) compared to DIG-OFMSW (1.05 +/- 0.13 g l(-1)) and a clearly different lipids accumulation yield (28.86 +/- 0.05% in DIG-WL compared to 6.1 +/- 0.2% of DIG-OFMSW, on total solids). Lipid characterization showed a high oleic acid accumulation (69.52 +/- 0.50%w/w in DIG-WL) that positively influence biodiesel properties and a low linolenic acids content (below 0.30%w/w) that comply with European law EN14214 for biodiesel (linolenic acid content lower than 12%w/w). In addition, due to the high concentration of palmitic and stearic acids detected at the end of test, this oil can be used as new substrate to produce stearin, normally produced from palm oil.
PDF

Similar Articles

ID Score Article
27072 Scarponi, P; Caminiti, V; Bravi, M; Izzo, FC; Cavinato, C Coupling anaerobic co-digestion of winery waste and waste activated sludge with a microalgae process: Optimization of a semi-continuous system(2024)
10750 Talapatra, N; Ghosh, UK New concept of biodiesel production using food waste digestate powder: Co-culturing algae-activated sludge symbiotic system in low N and P paper mill wastewater(2022)
29584 Chintagunta, AD; Zuccaro, G; Kumar, M; Kumar, SPJ; Garlapati, VK; Postemsky, PD; Kumar, NSS; Chandel, AK; Simal-Gandara, J Biodiesel Production From Lignocellulosic Biomass Using Oleaginous Microbes: Prospects for Integrated Biofuel Production(2021)
23788 Almutairi, AW Harnessing waste glycerol to mitigate salinity constraints in freshwater microalgae cultivation for enhanced biodiesel recovery(2024)Journal Of King Saud University Science, 36, 7
7298 Singh, S; Chaturvedi, S; Syed, N; Rastogi, D; Kumar, P; Sharma, PK; Kumar, D; Sahoo, D; Srivastava, N; Nannaware, AD; Khare, SK; Rout, PK Production of fatty acids from distilled aromatic waste biomass using oleaginous yeast(2024)
10986 Carota, E; Petruccioli, M; D'Annibale, A; Crognale, S Mixed glycerol and orange peel-based substrate for fed-batch microbial biodiesel production(2020)Heliyon, 6, 9
7100 Sundaramahalingam, MA; Sivashanmugam, P Concomitant strategy of wastewater treatment and biodiesel production using innate yeast cell (Rhodotorula mucilaginosa) from food industry sewerage and its energy system analysis(2023)
27608 Frkova, Z; Venditti, S; Herr, P; Hansen, J Assessment of the production of biodiesel from urban wastewater-derived lipids(2020)
8049 Bouras, S; Katsoulas, N; Antoniadis, D; Karapanagiotidis, IT Use of Biofuel Industry Wastes as Alternative Nutrient Sources for DHA-YieldingSchizochytrium limacinumProduction(2020)Applied Sciences-Basel, 10, 12
25857 Elsayed, M; Eraky, M; Osman, AI; Wang, J; Farghali, M; Rashwan, AK; Yacoub, IH; Hanelt, D; Abomohra, A Sustainable valorization of waste glycerol into bioethanol and biodiesel through biocircular approaches: a review(2024)Environmental Chemistry Letters, 22, 2
Scroll