Knowledge Agora



Similar Articles

Title Implementation of a Circular Bioeconomy: Obtaining Cellulose Fibers Derived from Portuguese Vine Pruning Residues for Heritage Conservation, Oxidized with TEMPO and Ultrasonic Treatment
ID_Doc 20793
Authors Araujo, L; Machado, AR; Sousa, S; Ramos, OL; Ribeiro, AB; Casanova, F; Pintado, ME; Vieira, E; Moreira, P
Title Implementation of a Circular Bioeconomy: Obtaining Cellulose Fibers Derived from Portuguese Vine Pruning Residues for Heritage Conservation, Oxidized with TEMPO and Ultrasonic Treatment
Year 2023
Published Agriculture-Basel, 13, 10
Abstract Inspired by the principles of the circular economy, using vineyard pruning residues as a source of raw materials for producing nanocellulose is a promising approach to transforming vineyard resources into value-added products. This study aimed to obtain and characterize cellulose and cellulose nanofibers from such sources. The cellulose collected from different fractions of micronized stems (500, 300, 150 mu m, and retain) of vines was submitted to autohydrolysis and finally bleached. Soon, it underwent treatment via (2,2,6,6-tetrametil-piperidi-1-nil)oxil (TEMPO) oxidation and ultrasonic to obtain nanocellulose fibers. The cellulose films were obtained at a microscale thickness of 0.05 +/- 0.00; 0.37 +/- 0.03; 0.06 +/- 0.01 e 0.030 +/- 0.01 mm, with the following particle size: 500 mu m, 300 mu m, 150 mu m, and retain (<150 mu m). The bleaching efficiency of the cellulose fibers of each particle size fraction was evaluated for color through a colorimeter. In addition, the extraction of cellulose fibers was assessed by infrared with Fourier transform, and size and shape were assessed by microscopy. Differential scanning calorimetry and X-ray diffraction were performed to confirm the thermal and crystalline properties. Combining autohydrolysis with a bleaching step proved to be a promising and ecological alternative to obtain white fractions rich in cellulose. It was possible to perform the extraction of cellulose to obtain nanocellulose fibers from vine pruning residues for the development of coatings for the conservation of heritage buildings from environmental conditions through an environmentally friendly process.
PDF https://www.mdpi.com/2077-0472/13/10/1905/pdf?version=1695905270

Similar Articles

ID Score Article
26734 Sánchez-Gutiérrez, M; Espinosa, E; Bascón-Villegas, I; Pérez-Rodríguez, F; Carrasco, E; Rodríguez, A Production of Cellulose Nanofibers from Olive Tree Harvest-A Residue with Wide Applications(2020)Agronomy-Basel, 10, 5
25276 Guancha-Chalapud, MA; Serna-Cock, L; Tirado, DF Valorization of Pineapple Residues from the Colombian Agroindustry to Produce Cellulose Nanofibers(2022)Applied Sciences-Basel, 12, 14
12919 Stampino, PG; Riva, L; Punta, C; Elegir, G; Bussini, D; Dotelli, G Comparative Life Cycle Assessment of Cellulose Nanofibres Production Routes from Virgin and Recycled Raw Materials(2021)Molecules, 26.0, 9
13131 Yu, YH; Guo, W; Qu, JJ; Wang, S; Wang, XG; He, Y; Yang, Y; He, Q; Liu, XD Preparation and characterization of dialdehyde cellulose nanocrystals from the waste nutshell(2023)
22745 Balea, A; Merayo, N; De La Fuente, E; Negro, C; Blanco, A Assessing the influence of refining, bleaching and TEMPO-mediated oxidation on the production of more sustainable cellulose nanofibers and their application as paper additives(2017)
22418 Sharma, N; Allardyce, BJ; Rajkhowa, R; Agrawal, R Biodegradable Cellulose and Cellulose Nanofibres-Based Coating Materials as a Postharvest Preservative for Horticultural Products(2024)Journal Of Polymers And The Environment, 32.0, 3
26564 Almeida, RO; Ramos, A; Alves, L; Potsi, E; Ferreira, PJT; Carvalho, MGVS; Rasteiro, MG; Gamelas, JAF Production of nanocellulose gels and films from invasive tree species(2021)
9648 Ojo, AO An Overview of Lignocellulose and Its Biotechnological Importance in High-Value Product Production(2023)Fermentation-Basel, 9.0, 11
29827 Kumar, A; Gupta, V; Gaikwad, KK Microfibrillated cellulose from pine cone: extraction, properties, and characterization(2023)Biomass Conversion And Biorefinery, 13.0, 17
10610 Gröndahl, J; Karisalmi, K; Vapaavuori, J Micro- and nanocelluloses from non-wood waste sources; processes and use in industrial applications(2021)Soft Matter, 17, 43
Scroll