Knowledge Agora



Similar Articles

Title Synthesis of Rigid Polyurethane Foams Incorporating Polyols from Chemical Recycling of Post-Industrial Waste Polyurethane Foams
ID_Doc 23887
Authors Amundarain, I; Miguel-Fernández, R; Asueta, A; García-Fernández, S; Arnaiz, S
Title Synthesis of Rigid Polyurethane Foams Incorporating Polyols from Chemical Recycling of Post-Industrial Waste Polyurethane Foams
Year 2022
Published Polymers, 14, 6
Abstract The preparation and characteristics of rigid polyurethane foams (RPUFs) synthesized from polyols obtained by glycolysis of post-industrial waste RPUFs have been studied. More precisely, waste rigid foams that have been chemically recycled by glycolysis in this work are industrially produced pieces for housing and bracket applications. The glycolysis products have been purified by vacuum distillation. The physicochemical properties of the polyols, such as hydroxyl value, acid value, average molecular weight (M-n) and viscosity have been analyzed. The chemical structure and thermal stability of the polyols have been studied by means of FTIR and TGA, respectively. Partial substitution of the commercial polyol (up to 15 wt.%) by the recycled polyols increases the reactivity of the RPUFs synthesis, according to short characteristic times during the foaming process along with more exothermic temperature profiles. Foams formulated with recycled polyols have a lower bulk density (88.3-96.9 kg m(-3)) and smaller cell sizes compared to a conventional reference RPUF. The addition of recycled polyols (up to 10 wt.%) into the formulation causes a slight decrease in compressive properties, whereas tensile strength and modulus values increase remarkably.
PDF https://www.mdpi.com/2073-4360/14/6/1157/pdf?version=1647354507

Similar Articles

ID Score Article
23984 Miguel-Fernández, R; Amundarain, I; Asueta, A; García-Fernández, S; Arnaiz, S; Miazza, NL; Montón, E; Rodríguez-García, B; Bianca-Benchea, E Recovery of Green Polyols from Rigid Polyurethane Waste by Catalytic Depolymerization(2022)Polymers, 14, 14
21897 Njuguna, JK; Muchiri, P; Mwema, FM; Karuri, NW; Herzog, M; Dimitrov, K Determination of thermo-mechanical properties of recycled polyurethane from glycolysis polyol(2021)
9948 Ko, JY; Zarei, M; Lee, SG; Cho, KL Single-Phase Recycling of Flexible Polyurethane Foam by Glycolysis and Oxyalkylation: Large-Scale Industrial Evaluation(2023)Acs Sustainable Chemistry & Engineering, 11.0, 27
13977 Paciorek-Sadowska, J; Borowicz, M; Chmiel, E; Lubczak, J Use of a Mixture of Polyols Based on Metasilicic Acid and Recycled PLA for Synthesis of Rigid Polyurethane Foams Susceptible to Biodegradation(2021)International Journal Of Molecular Sciences, 22, 1
16832 Kuranska, M; Leszczynska, M; Malewska, E; Prociak, A; Ryszkowska, J Implementation of Circular Economy Principles in the Synthesis of Polyurethane Foams(2020)Polymers, 12, 9
25885 Kairyte, A; Kremensas, A; Balciunas, G; Czlonka, S; Strakowska, A Closed Cell Rigid Polyurethane Foams Based on Low Functionality Polyols: Research of Dimensional Stability and Standardised Performance Properties(2020)Materials, 13, 6
29536 Sarim, M; Nikje, MMA; Dargah, M Synthesis and characterization of polyurethane rigid foam by using feedstocks received from renewable and recyclable resources(2023)Journal Of Porous Materials, 30.0, 4
7349 Grdadolnik, M; Zdovc, B; Drincic, A; Onder, OC; Utrosa, P; Ramos, SG; Ramos, ED; Pahovnik, D; Zagar, E Chemical Recycling of Flexible Polyurethane Foams by Aminolysis to Recover High-Quality Polyols(2023)Acs Sustainable Chemistry & Engineering, 11, 29
9741 Jin, WS; Sahu, P; Kim, G; Jeong, S; Jeon, CY; Lee, TG; Lee, SH; Oh, JS An Insight Into the Recycling of Waste Flexible Polyurethane Foam Using Glycolysis(2023)Elastomers And Composites, 58.0, 1
9609 Omrani, I; Berenjegani, RM Chemical Recycling of Flexible Polyurethane Foam Scraps Using Bio-Based Acidolysis Agents(2024)Acs Applied Polymer Materials, 6.0, 17
Scroll