Knowledge Agora



Similar Articles

Title Recycling of polyurethane wastes using different carboxylic acids via acidolysis to produce wood adhesives
ID_Doc 24429
Authors Godinho, B; Gama, N; Barros-Timmons, A; Ferreira, A
Title Recycling of polyurethane wastes using different carboxylic acids via acidolysis to produce wood adhesives
Year 2021
Published Journal Of Polymer Science, 59, 8
Abstract This study aims to provide further understanding on the depolymerization of polyurethanes (PU) via acidolysis. Therefore, polyurethane foams scraps are chemical recycled using different dicarboxylic acids, namely succinic and phthalic dicarboxylic acids, being the reaction products identified using Fourier-transform infrared spectroscopy, nuclear magnetic resonance and gel permeation chromatography. The results obtained show that succinic acid has higher efficiency as cleavage agent, as a result, the succinic acid ensuing recovered polyol (RP) presents higher hydroxyl value and lower viscosity. Additionally, from the oxidative-induction time measurements, it is observed that the RP is considerably more thermally stable, than the petroleum-based polyol, due to the higher content of aromatic moieties. Afterwards, the RP is used as substitute of petroleum-based polyol in the production of polyurethane adhesives (PUA) and compared with conventional polyol based PUA. Due to the higher content of aromatic moieties, higher bonding strength is achieved using the RP. Overall, further understanding on the acidolysis is obtained, proving the suitability of this method for the recycling of PU.
PDF

Similar Articles

ID Score Article
24280 Gama, N; Godinho, B; Marques, G; Silva, R; Barros-Timmons, A; Ferreira, A Recycling of polyurethane scraps via acidolysis(2020)
16850 Gama, N; Godinho, B; Marques, G; Silva, R; Barros-Timmons, A; Ferreira, A Recycling of polyurethane by acidolysis: The effect of reaction conditions on the properties of the recovered polyol(2021)
15089 Gama, N; Godinho, B; Madureira, P; Marques, G; Barros-Timmons, A; Ferreira, A Polyurethane Recycling Through Acidolysis: Current Status and Prospects for the Future(2024)
9609 Omrani, I; Berenjegani, RM Chemical Recycling of Flexible Polyurethane Foam Scraps Using Bio-Based Acidolysis Agents(2024)Acs Applied Polymer Materials, 6.0, 17
23984 Miguel-Fernández, R; Amundarain, I; Asueta, A; García-Fernández, S; Arnaiz, S; Miazza, NL; Montón, E; Rodríguez-García, B; Bianca-Benchea, E Recovery of Green Polyols from Rigid Polyurethane Waste by Catalytic Depolymerization(2022)Polymers, 14, 14
9016 Ivdre, A; Abolins, A; Volkovs, N; Vevere, L; Paze, A; Makars, R; Godina, D; Rizikovs, J Rigid Polyurethane Foams as Thermal Insulation Material from Novel Suberinic Acid-Based Polyols(2023)Polymers, 15.0, 14
24513 Donadini, R; Boaretti, C; Scopel, L; Lorenzetti, A; Modesti, M Deamination of Polyols from the Glycolysis of Polyurethane(2024)Chemistry-A European Journal, 30, 3
12880 Johansen, MB; Donslund, BS; Kristensen, SK; Lindhardt, AT; Skrydstrup, T tert-Amyl Alcohol-Mediated Deconstruction of Polyurethane for Polyol and Aniline Recovery(2022)Acs Sustainable Chemistry & Engineering, 10.0, 34
7349 Grdadolnik, M; Zdovc, B; Drincic, A; Onder, OC; Utrosa, P; Ramos, SG; Ramos, ED; Pahovnik, D; Zagar, E Chemical Recycling of Flexible Polyurethane Foams by Aminolysis to Recover High-Quality Polyols(2023)Acs Sustainable Chemistry & Engineering, 11, 29
17748 Etxaniz, I; Llorente, O; Aizpurua, J; Martín, L; González, A; Irusta, L Dispersion Characteristics and Curing Behaviour of Waterborne UV Crosslinkable Polyurethanes Based on Renewable Dimer Fatty Acid Polyesters(2019)Journal Of Polymers And The Environment, 27, 1
Scroll