Knowledge Agora



Similar Articles

Title Lifecycle Assessment of Strategies for Decarbonising Wind Blade Recycling toward Net Zero 2050
ID_Doc 24873
Authors Pender, K; Romoli, F; Fuller, J
Title Lifecycle Assessment of Strategies for Decarbonising Wind Blade Recycling toward Net Zero 2050
Year 2024
Published Energies, 17, 12
Abstract The wind energy sector faces a persistent challenge in developing sustainable solutions for decommissioned Wind Turbine Blades (WTB). This study utilises Lifecycle Assessment (LCA) to evaluate the gate-to-gate carbon footprint of high-profile disposal and recycling methods, aiming to determine optimal strategies for WTB waste treatment in the UK. While this article analyses the UK as a case study, the findings are applicable to, and intended to inform, recycling strategies for WTB waste globally. Long-term sustainability depends heavily on factors like evolving energy grids and changing WTB waste compositions and these must be considered for robust analysis and development strategy recommendations. In the short to medium term, mechanical recycling of mixed WTB waste is sufficient to minimise Global Warming Potential (GWP) due to the scarcity of carbon fibre in WTB waste streams. Beyond 2040, carbon fibre recycling becomes crucial to reduce GWP. The study emphasises the importance of matching WTB sub-structure material compositions with preferred waste treatment options for the lowest overall impact. Future development should focus on the extraction of carbon fibre reinforced polymer (CFRP) structures in WTB waste streams, commercialising large-scale CFRP structure recycling technologies, establishing supply chains, and validating market routes for secondary carbon fibre products. In parallel, scaling up low-impact options, like mechanical recycling, is vital to minimise WTB waste landfilling. Developing viable applications and cost-effective market routes for mechanical recyclates is necessary to displace virgin glass fibres, while optimising upstream recycling processes based on product requirements.
PDF https://www.mdpi.com/1996-1073/17/12/3008/pdf?version=1718721744

Similar Articles

ID Score Article
21961 Khalid, MY; Arif, ZU; Hossain, M; Umer, R Recycling of wind turbine blades through modern recycling technologies: A road to zero waste(2023)
3964 Tyurkay, A; Kirkelund, GM; Lima, ATM State-of-the-art circular economy practices for end-of-life wind turbine blades for use in the construction industry(2024)
12553 Tayebi, ST; Sambucci, M; Valente, M Waste Management of Wind Turbine Blades: A Comprehensive Review on Available Recycling Technologies with A Focus on Overcoming Potential Environmental Hazards Caused by Microplastic Production(2024)Sustainability, 16.0, 11
3205 Jensen, JP; Skelton, K Wind turbine blade recycling: Experiences, challenges and possibilities in a circular economy(2018)
22146 Jensen, JP Evaluating the environmental impacts of recycling wind turbines(2019)Wind Energy, 22.0, 2
12609 Lichtenegger, G; Rentizelas, AA; Trivyza, N; Siegl, S Offshore and onshore wind turbine blade waste material forecast at a regional level in Europe until 2050(2020)
13061 Cooperman, A; Eberle, A; Lantz, E Wind turbine blade material in the United States: Quantities, costs, and end-of-life options(2021)
3583 Kramer, KJ; Abrahamsen, AB; Beauson, J; Hansen, UE; Clausen, NE; Velenturf, APM; Schmidt, M Quantifying circular economy pathways of decommissioned onshore wind turbines: The case of Denmark and Germany(2024)
28594 Diez-Cañamero, B; Mendoza, JMF Circular economy performance and carbon footprint of wind turbine blade waste management alternatives(2023)
16788 Martinez-Marquez, D; Florin, N; Hall, W; Majewski, P; Wang, H State-of-the-art review of product stewardship strategies for large composite wind turbine blades(2022)
Scroll