Knowledge Agora



Similar Articles

Title Setting behavior and mechanical properties of concrete rubble fly ash geopolymers
ID_Doc 25882
Authors Kugler, F; Karrer, J; Krcmar, W; Teipel, U
Title Setting behavior and mechanical properties of concrete rubble fly ash geopolymers
Year 2022
Published
Abstract Due to concerns about the very high primary raw material consumption and CO2 emissions of the economically important construction sector, the demand for "green" binders is growing. One option that is receiving particular attention is the material class of "geopolymers", which could be used as a substitute for Portland cement. This new group of binders not only exhibits improved mechanical properties, but is also characterized by particularly low carbon dioxide emissions in the course of its production. This work focuses on the influence of concrete rubble on the setting behavior and microstructural properties of fly ash-based geopolymers. In the course of the investigations, the manufactured geopolymer samples are examined for the material parameters relevant to building materials, namely compressive strength, raw density and thermal conductivity. The setting behavior and the forming structures are investigated by infrared spectroscopy, X-ray diffraction analysis and scanning electron microscopy. The present work is intended to contribute to the development of a suitable recycling strategy for the material recycling of concrete rubble in novel substitute construction materials, the geopolymers.
PDF https://doi.org/10.1016/j.oceram.2022.100286

Similar Articles

ID Score Article
25384 Kugler, F; Krcmar, W; Teipel, U Setting behavior and mechanical properties of geopolymers from fly ash and real construction waste(2024)International Journal Of Ceramic Engineering And Science, 6, 1
29326 Ahmed, HU; Mohammed, AA; Rafiq, S; Mohammed, AS; Mosavi, A; Sor, NH; Qaidi, SMA Compressive Strength of Sustainable Geopolymer Concrete Composites: A State-of-the-Art Review(2021)Sustainability, 13.0, 24
24088 Figiela, B; Brudny, K; Lin, WT; Korniejenko, K Investigation of Mechanical Properties and Microstructure of Construction- and Demolition-Waste-Based Geopolymers(2022)Journal Of Composites Science, 6, 7
27521 Ben Ali, M; El Fadili, H; El Mahi, M; Aziz, A; Moussadik, A; Devkota, S; Lotfi, E Preparation of greener geopolymer binder based fly ash: An effective strategy toward carbon neutrality(2024)Ceramics International, 50.0, 15
24032 Yalcinkaya, B; Spirek, T; Bousa, M; Louda, P; Ruzek, V; Rapiejko, C; Buczkowska, KE Unlocking the Potential of Biomass Fly Ash: Exploring Its Application in Geopolymeric Materials and a Comparative Case Study of BFA-Based Geopolymeric Concrete against Conventional Concrete(2023)Ceramics-Switzerland, 6, 3
8303 Saeli, M; Novais, RM; Seabra, MP; Labrincha, JA Mix design and mechanical performance of geopolymer binder for sustainable construction and building material(2017)
15844 Ionescu, BA; Barbu, AM; Lazarescu, AV; Rada, S; Gabor, T; Florean, C The Influence of Substitution of Fly Ash with Marble Dust or Blast Furnace Slag on the Properties of the Alkali-Activated Geopolymer Paste(2023)Coatings, 13, 2
25870 Danish, A; Torres, AS; Moro, C; Salim, MU Hope or hype? Evaluating the environmental footprint of reclaimed fly ash in geopolymer production(2024)
13439 Saeli, M; Senff, L; Tobaldi, DM; La Scalia, G; Seabra, MP; Labrincha, JA Innovative Recycling of Lime Slaker Grits from Paper-Pulp Industry Reused as Aggregate in Ambient Cured Biomass Fly Ash-Based Geopolymers for Sustainable Construction Material(2019)Sustainability, 11, 12
29948 Longo, F; Lassandro, P; Moshiri, A; Phatak, T; Aiello, MA; Krakowiak, KJ Lightweight geopolymer-based mortars for the structural and energy retrofit of buildings(2020)
Scroll