Knowledge Agora



Similar Articles

Title Strategies to improve viability of a circular carbon bioeconomy-A techno-economic review of microbial electrosynthesis and gas fermentation
ID_Doc 26548
Authors Wood, JC; Grov, J; Marcellin, E; Heffernan, JK; Hu, SH; Yuan, ZG; Virdis, B
Title Strategies to improve viability of a circular carbon bioeconomy-A techno-economic review of microbial electrosynthesis and gas fermentation
Year 2021
Published
Abstract A circular carbon bioeconomy has potential to halt atmospheric accumulation of greenhouse gases causing climate change and sustainably produce chemical, agricultural and fuel products. Here, we report application of a simplified technoeconomic assessment to critically review two approaches in this space - microbial electrosynthesis and gas fermentation. For microbial electrosynthesis, decoupling of surface-dependant abiotic process for electron delivery from volume-dependant biotic carbon fixation, is shown as the only economically viable strategy to scale-up due to comparatively low biofilm electron consumption rate. This is effectively an electrolyser-assisted gas fermentation system. Targeting high-value products, such as protein for human food consumption is one of the few pathways forward for electrolyser-assisted gas fermentation. Alternatively, gas fermentation of reformed biogas presents an interesting and potentially more sustainable implementation pathway to improve economic viability of chemicals. This critical review suggests linking water treatment resource recovery with gas fermentation is attractive for bioplastics and butanol in terms of competitiveness and market demand.
PDF

Similar Articles

ID Score Article
26305 Salar-García, MJ; Ortiz-Martínez, VM; Sánchez-Segado, S; Sánchez, RV; López, AS; Blanco, LJL; Godínez-Seoane, C Sustainable Production of Biofuels and Biochemicals via Electro-Fermentation Technology(2024)Molecules, 29, 4
7241 Roy, M; Aryal, N; Zhang, YF; Patil, SA; Pant, D Technological progress and readiness level of microbial electrosynthesis and electrofermentation for carbon dioxide and organic wastes valorization(2022)
10117 Quraishi, M; Wani, K; Pandit, S; Gupta, PK; Rai, AK; Lahiri, D; Jadhav, DA; Ray, RR; Jung, SP; Thakur, VK; Prasad, R Valorisation of CO2 into Value-Added Products via Microbial Electrosynthesis (MES) and Electro-Fermentation Technology(2021)Fermentation-Basel, 7.0, 4
8148 Jiang, Y; May, HD; Lu, L; Liang, P; Huang, X; Ren, ZJ Carbon dioxide and organic waste valorization by microbial electrosynthesis and electro-fermentation(2019)
21706 Fackler, N; Heijstra, BD; Rasor, BJ; Brown, H; Martin, J; Ni, ZF; Shebek, KM; Rosin, RR; Simpson, SD; Tyo, KE; Giannone, RJ; Hettich, RL; Tschaplinski, TJ; Leang, C; Brown, SD; Jewett, MC; Köpke, M Stepping on the Gas to a Circular Economy: Accelerating Development of Carbon-Negative Chemical Production from Gas Fermentation(2021)
8024 Bian, B; Bajracharya, S; Xu, JJ; Pant, D; Saikaly, PE Microbial electrosynthesis from CO2: Challenges, opportunities and perspectives in the context of circular bioeconomy(2020)
16191 Garg, A; Basu, S; Shetti, NP; Bhattu, M; Alodhayb, AN; Pandiaraj, S Biowaste to bioenergy nexus: Fostering sustainability and circular economy(2024)
5231 Pavan, M; Reinmets, K; Garg, S; Mueller, AP; Marcellin, E; Köpke, M; Valgepea, K Advances in systems metabolic engineering of autotrophic carbon oxide-fixing biocatalysts towards a circular economy(2022)
7823 Molitor, B; Mishra, A; Angenent, LT Power-to-protein: converting renewable electric power and carbon dioxide into single cell protein with a two-stage bioprocess(2019)Energy & Environmental Science, 12, 12
28526 Ewing, TA; Nouse, N; van Lint, M; van Haveren, J; Hugenholtz, J; van Es, DS Fermentation for the production of biobased chemicals in a circular economy: a perspective for the period 2022-2050(2022)Green Chemistry, 24.0, 17
Scroll