Knowledge Agora



Similar Articles

Title Virtuous utilization of carbon dioxide in pyrolysis of polylactic acid
ID_Doc 26561
Authors Cho, SH; Kim, Y; Lee, S; Lin, KYA; Chen, WH; Jung, S; Lee, DY; Moon, DH; Jeon, YJ; Kwon, EE
Title Virtuous utilization of carbon dioxide in pyrolysis of polylactic acid
Year 2023
Published
Abstract Polylactic acid has been adopted as a strategic alternative to petroplastics because of its biodegradability. The waste generation rate could be proportional to its use, considering the short lifespan of polylactic acid. However, a practical disposal or recycling protocol for polylactic acid waste has not yet been developed. Thus, this study suggests a promising thermochemical platform for valorizing polylactic acid waste into energy resources (syngas). Specifically, carbon dioxide-assisted pyrolysis has been suggested to impart environmental features to polylactic acid disposal. Before the pyrolysis tests, the polylactic acid waste sample was characterized by Fourier transform-infrared spectrometer and thermogravimetric analyses, which showed that polylactic acid contained a substantial amount of additives and impurities (similar to 13 wt%). The impurity containing polylactic acid was converted into pyrogenic gases and biocrudes through pyrolysis process. The pyrolysis was performed under carbon dioxide condition and led to enhanced carbon monoxide formation from simultaneous homogeneous reactions between CO2 and volatile organic compounds evolved from thermal degradation of polylactic acid. CO2 was reduced and the volatile compounds were oxidized. The evolution of carbon monoxide from pyrolysis under carbon dioxide condition was 2 times higher than that from nitrogen condition. The concentration of carbon monoxide from the pyrolysis of polylactic acid waste with respect to plastics and biomass was considerably higher. This observation indicates that the susceptibility of carbon dioxide to the homogeneous reaction is highly sensitive. To seek a way to hasten the homogeneous reaction, silica supported nickel catalysts were applied. The evolution of carbon monoxide from catalytic pyrolysis under carbon dioxide condition was 4.5 times higher than inert atmosphere.
PDF

Similar Articles

ID Score Article
26791 Cuevas, AB; Leiva-Candia, DE; Dorado, MP An Overview of Pyrolysis as Waste Treatment to Produce Eco-Energy(2024)Energies, 17, 12
23649 Laghezza, M; Fiore, S; Berruti, F A review on the pyrolytic conversion of plastic waste into fuels and chemicals(2024)
15429 Sophonrat, N; Sandström, L; Zaini, IN; Yang, WH Stepwise pyrolysis of mixed plastics and paper for separation of oxygenated and hydrocarbon condensates(2018)
26123 Kwon, D; Jung, S; Lin, KYA; Tsang, YF; Park, YK; Kwon, EE Synergistic effects of CO2 on complete thermal degradation of plastic waste mixture through a catalytic pyrolysis platform: A case study of disposable diaper(2021)
27860 Urciuolo, M; Migliaccio, R; Chirone, R; Bareschino, P; Mancusi, E; Pepe, F; Ruoppolo, G Thermal and Catalytic Pyrolysis of Real Plastic Solid Waste as a Sustainable Strategy for Circular Economy(2023)Combustion Science And Technology, 195.0, 14
26632 Swiechowski, K; Zafiu, C; Bialowiec, A Carbonized Solid Fuel Production from Polylactic Acid and Paper Waste Due to Torrefaction(2021)Materials, 14, 22
19620 Tan, KQ; Ahmad, MA; Da Oh, W; Low, SC Valorization of hazardous plastic wastes into value-added resources by catalytic pyrolysis-gasification: A review of techno-economic analysis(2023)
26629 Jung, S; Lee, S; Song, H; Tsang, YF; Kwon, EE Sustainable Valorization of E-Waste Plastic through Catalytic Pyrolysis Using CO2(2022)
26667 Choi, D; Jung, S; Tsang, Y; Song, H; Moon, DH; Kwon, EE Sustainable valorization of styrofoam and CO2 into syngas(2022)
22658 Jablonska, B; Poznanska, G; Jablonski, P; Zwolinska, J Thermochemical Valorization of Plastic Waste Containing Low Density Polyethylene, Polyvinyl Chloride and Polyvinyl Butyral into Thermal and Fuel Energy(2024)Energies, 17.0, 14
Scroll