Knowledge Agora



Similar Articles

Title The potential of using sweet corn (Zea mays Saccharata) husk waste as a source for biodegradable plastics
ID_Doc 27970
Authors Setiawan, A; Mahfud, RNM; Mayangsari, NE; Widiana, DR; Iswara, AP; Dermawan, D
Title The potential of using sweet corn (Zea mays Saccharata) husk waste as a source for biodegradable plastics
Year 2024
Published
Abstract Synthetic plastics are generally challenging to degrade in the environment and capable of releasing harmful chemicals upon improper disposal, endangering both wildlife and humans. Therefore, this study aimed to develop cellulose-based bioplastics from corn husk waste and carboxymethyl cellulose (CMC) using sorbitol as a plasticizer. The effect of corn husk delignification, CMC addition, and variations in sorbitol concentration were investigated. The results of Chesson's test showed that the delignification process increased cellulose content to 77.30% and decreased lignin content to 3.6%. Additionally, Fourier-transform infrared (FTIR) demonstrated the effective removal of lignin and hemicellulose components from corn husk fibers. X-ray diffraction (XRD) analysis indicated the elevation of corn husk crystallinity from 63.97% to 80.83% after the treatment. Scanning electron microscopy (SEM) revealed bioplastic morphologies featuring porous and smooth surfaces juxtaposed with un -even and lumpy characteristics. Biodegradation assessment yielded a peak value of 33.4% under a composition comprising 3% CMC and 1.5% sorbitol. The swelling test performed on corn husk bioplastic samples produced values ranging from 52.89 to 66%, with the highest value recorded at 66% for the bioplastic formulation con-sisting of 3% CMC and 1.5% sorbitol. Resistance testing on samples containing 3% CMC, with a soaking time of four days in acidic environments, indicated a maximum weight loss of 61.3% (10% H2SO4) and 62.5% (20% H2SO4). Alkaline resistance tests displayed a 95.6% (10% NaOH) and 94.6% (20% NaOH) weight loss under similar conditions. These results suggested the potential utility of corn husk waste as a viable bioplastic source, promoting the circular economy concept in Indonesia while mitigating greenhouse gas emissions, reducing waste volume, and increasing rural economic growth.
PDF

Similar Articles

ID Score Article
23361 Salas, R; Ruiz, M; Felix, M Revalorisation of a residue from the maize-snack industry through the development of bio-based materials. Effect of the plasticiser(2024)
22418 Sharma, N; Allardyce, BJ; Rajkhowa, R; Agrawal, R Biodegradable Cellulose and Cellulose Nanofibres-Based Coating Materials as a Postharvest Preservative for Horticultural Products(2024)Journal Of Polymers And The Environment, 32.0, 3
10156 Valle, C; Voss, M; Gaudino, EC; Forte, C; Cravotto, G; Tabasso, S Harnessing Agri-Food Waste as a Source of Biopolymers for Agriculture(2024)Applied Sciences-Basel, 14, 10
7890 Resendiz-Vazquez, JA; Roman-Doval, R; Santoyo-Fexas, F; Gómez-Lim, MA; Verdín-García, M; Mendoza, S Chemical and Biological Delignification Treatments from Blue Agave and Sorghum By-Products to Obtain Cellulose Nanocrystals(2022)Waste And Biomass Valorization, 13, 2
14068 Alicho, J; Mtunzi, FF; Maia-Obi, LP; Okoli, BJ; Qurix, BW; Modise, JS Effect of Surface Treatments on Zea mays Husk and the Behaviour of Husk/Low-Density Polyethylene Composites(2024)Sustainability, 16, 13
13131 Yu, YH; Guo, W; Qu, JJ; Wang, S; Wang, XG; He, Y; Yang, Y; He, Q; Liu, XD Preparation and characterization of dialdehyde cellulose nanocrystals from the waste nutshell(2023)
16704 Kovacevic, Z; Bischof, S; Bilandzija, N; Kricka, T Conversion of Waste Agricultural Biomass from Straw into Useful Bioproducts-Wheat Fibers and Biofuels(2024)Sustainability, 16, 11
27334 Gupta, N; Mahur, BK; Izrayeel, AMD; Ahuja, A; Rastogi, VK Biomass conversion of agricultural waste residues for different applications: a comprehensive review(2022)Environmental Science And Pollution Research, 29.0, 49
10334 Panda, J; Mishra, AK; Mohanta, YK; Patowary, K; Rauta, PR; Mishra, B Exploring Biopolymer for Food and Pharmaceuticals Application in the Circular Bioeconomy: An Agro-Food Waste-to-Wealth Approach(2024)
9648 Ojo, AO An Overview of Lignocellulose and Its Biotechnological Importance in High-Value Product Production(2023)Fermentation-Basel, 9.0, 11
Scroll