Knowledge Agora



Similar Articles

Title Measuring the Circularity and Impact Reduction Potential of Post-Industrial and Post-Consumer Recycled Plastics
ID_Doc 29250
Authors Schulte, A; Kampmann, B; Galafton, C
Title Measuring the Circularity and Impact Reduction Potential of Post-Industrial and Post-Consumer Recycled Plastics
Year 2023
Published Sustainability, 15.0, 16
Abstract Post-industrial recycling (PIR) and post-consumer recycling (PCR) are measures used to sustain resources by improving material circularity and sustainability. Currently, circularity is mainly measured as the degree of reutilization of a material from 0 to 100% at the product or company level. This measure fails to assess the resource usage over multiple product life cycles. Therefore, we propose to assess circularity as (i) the frequency of resource use in products (effective circularity, eC), and as (ii) a vehicle to reduce environmental impacts (environmentally efficient circularity, eeC). Additionally, to compare the environmental impacts of using recycled materials from PIR or PCR, we analyze their impact reduction potential (IRP), indicating the environmental benefits of recycling in relation to virgin material submitted to the market. We demonstrate the suggested indicators for a case study material: polypropylene. For this polymer type, the eC ranges between 0.93 and 9.08 uses of the resource, on average, depending on collection, sorting, and recycling rates. Likewise, the eeC ranges between 0.31 and 1.50 uses per kg of CO2 equivalents emitted. PCR has a higher IRP regarding climate change impacts than PIR in all analyzed scenarios. The results reveal the relevance of PCR and PIR beyond the product life cycle. Finally, we discuss possible embeddings of the indicators in the assessment of climate policy and environmental protection measures, such as strengthening the use of PCR in contrast to PIR materials.
PDF

Similar Articles

ID Score Article
25707 Venkatachalam, V; Spierling, S; Endres, HJ Recyclable, but not recycled-an indicator to quantify the environmental impacts of plastic waste disposal(2024)
18466 Klotz, M; Haupt, M; Hellweg, S Potentials and limits of mechanical plastic recycling(2023)Journal Of Industrial Ecology, 27.0, 4
4615 Venkatachalam, V; Pohler, M; Spierling, S; Nickel, L; Barner, L; Endres, HJ Design for Recycling Strategies Based on the Life Cycle Assessment and End of Life Options of Plastics in a Circular Economy(2022)Macromolecular Chemistry And Physics, 223, 13
21827 Klemes, JJ; Fan, YV; Jiang, P Plastics: friends or foes? The circularity and plastic waste footprint(2021)Energy Sources Part A-Recovery Utilization And Environmental Effects, 43.0, 13
4772 Huysveld, S; Hubo, S; Ragaert, K; Dewulf, J Advancing circular economy benefit indicators and application on open-loop recycling of mixed and contaminated plastic waste fractions(2019)
28975 Nordahl, SL; Scown, CD Recommendations for life-cycle assessment of recyclable plastics in a circular economy(2024)Chemical Science, 15.0, 25
15034 Chairat, S; Gheewala, SH Life cycle assessment and circularity of polyethylene terephthalate bottles via closed and open loop recycling(2023)
24534 von Vacano, B; Mangold, H; Seitz, C The Time is ripe Plastics in the Cycle(2021)Chemie In Unserer Zeit, 55, 6
22698 Vadoudi, K; Deckers, P; Demuytere, C; Askanian, H; Verney, V Comparing a material circularity indicator to life cycle assessment: The case of a three-layer plastic packaging(2022)
4364 Ghosh, T; Avery, G; Bhatt, A; Uekert, T; Walzberg, J; Carpenter, A Towards a circular economy for PET bottle resin using a system dynamics inspired material flow model(2023)
Scroll