Knowledge Agora



Similar Articles

Title A Combined Pyro- and Hydrometallurgical Approach to Recycle Pyrolyzed Lithium-Ion Battery Black Mass Part 1: Production of Lithium Concentrates in an Electric Arc Furnace
ID_Doc 29251
Authors Sommerfeld, M; Vonderstein, C; Dertmann, C; Klimko, J; Orac, D; Miskufova, A; Havlík, T; Friedrich, B
Title A Combined Pyro- and Hydrometallurgical Approach to Recycle Pyrolyzed Lithium-Ion Battery Black Mass Part 1: Production of Lithium Concentrates in an Electric Arc Furnace
Year 2020
Published Metals, 10.0, 8
Abstract Due to the increasing demand for battery raw materials such as cobalt, nickel, manganese, and lithium, the extraction of these metals not only from primary, but also from secondary sources like spent lithium-ion batteries (LIBs) is becoming increasingly important. One possible approach for an optimized recovery of valuable metals from spent LIBs is a combined pyro- and hydrometallurgical process. According to the pyrometallurgical process route, in this paper, a suitable slag design for the generation of slag enriched by lithium and mixed cobalt, nickel, and copper alloy as intermediate products in a laboratory electric arc furnace was investigated. Smelting experiments were carried out using pyrolyzed pelletized black mass, copper(II) oxide, and different quartz additions as a flux to investigate the influence on lithium-slagging. With the proposed smelting operation, lithium could be enriched with a maximum yield of 82.4% in the slag, whereas the yield for cobalt, nickel, and copper in the metal alloy was 81.6%, 93.3%, and 90.7% respectively. The slag obtained from the melting process is investigated by chemical and mineralogical characterization techniques. Hydrometallurgical treatment to recover lithium is carried out with the slag and presented in part 2.
PDF

Similar Articles

ID Score Article
23531 Danczak, A; Ruismäki, R; Rinne, T; Klemettinen, L; O'Brien, H; Taskinen, P; Jokilaakso, A; Serna-Guerrero, R Worth from Waste: Utilizing a Graphite-Rich Fraction from Spent Lithium-Ion Batteries as Alternative Reductant in Nickel Slag Cleaning(2021)Minerals, 11, 7
14824 Schwich, L; Schubert, T; Friedrich, B Early-Stage Recovery of Lithium from Tailored Thermal Conditioned Black Mass Part I: Mobilizing Lithium via Supercritical CO2-Carbonation(2021)Metals, 11, 2
12310 Vieceli, N; Casasola, R; Lombardo, G; Ebin, B; Petranikova, M Hydrometallurgical recycling of EV lithium-ion batteries: Effects of incineration on the leaching efficiency of metals using sulfuric acid(2021)
17836 Schirmer, T; Wahl, M; Bock, W; Kopnarski, M Determination of the Li Distribution in Synthetic Recycling Slag with SIMS(2021)Metals, 11, 5
7657 Woeste, R; Drude, ES; Vrucak, D; Klöckner, K; Rombach, E; Letmathe, P; Friedrich, B A techno-economic assessment of two recycling processes for black mass from end-of-life lithium-ion batteries(2024)
21108 Schwich, L; Friedrich, B Environmentally Friendly Recovery of Lithium from Lithium-Sulfur Batteries(2022)Metals, 12.0, 7
6410 Ruismäki, R; Rinne, T; Danczak, A; Taskinen, P; Serna-Guerrero, R; Jokilaakso, A Integrating Flotation and Pyrometallurgy for Recovering Graphite and Valuable Metals from Battery Scrap(2020)Metals, 10, 5
23485 Danczak, A; Klemettinen, L; Kurhila, M; Taskinen, P; Lindberg, D; Jokilaakso, A Behavior of Battery Metals Lithium, Cobalt, Manganese and Lanthanum in Black Copper Smelting(2020)Batteries-Basel, 6, 1
29586 Makuza, B; Tian, QH; Guo, XY; Chattopadhyay, K; Yu, DW Pyrometallurgical options for recycling spent lithium-ion batteries: A comprehensive review(2021)
17847 Schirmer, T; Qiu, H; Li, HJ; Goldmann, D; Fischlschweiger, M Li-Distribution in Compounds of the Li2O-MgO-Al2O3-SiO2-CaO System-A First Survey(2020)Metals, 10, 12
Scroll