Knowledge Agora



Similar Articles

Title Comparative review on microbial electrochemical technologies for resource recovery from wastewater towards circular economy and carbon neutrality
ID_Doc 5335
Authors Deng, SH; Wang, CQ; Ngo, HH; Guo, WS; You, N; Tang, H; Yu, HB; Tang, L; Han, J
Title Comparative review on microbial electrochemical technologies for resource recovery from wastewater towards circular economy and carbon neutrality
Year 2023
Published
Abstract Newly arising concepts such as the circular economy and carbon neutrality motivate resource recovery from wastewater. This paper reviews and discusses state-of-the-art microbial electrochemical technologies (METs), specifically microbial fuel cells (MFCs), microbial electrolysis cells (MECs) and microbial recycling cells (MRCs), which enable energy generation and nutrient recovery from wastewater. Mechanisms, key factors, applications, and limitations are compared and discussed. METs are effective in energy conversion, demonstrating advantages, drawbacks and future potential as specific scenarios. MECs and MRCs exhibited greater potential for simulta-neous nutrient recovery, and MRCs offer the best scaling-up potential and efficient mineral recovery. Research on METs should be more concerned with lifespan of materials, secondary pollutants reduction and scaled-up benchmark systems. More up-scaled application cases are expected for cost structures comparison and life cycle assessment of METs. This review could direct the follow-up research, development and successful imple-mentation of METs for resource recovery from wastewater.
PDF

Similar Articles

ID Score Article
14709 Sonawane, JM; Mahadevan, R; Pandey, A; Greener, J Recent progress in microbial fuel cells using substrates from diverse sources(2022)Heliyon, 8, 12
19755 Koul, Y; Devda, V; Varjani, S; Guo, WS; Ngo, HH; Taherzadeh, MJ; Chang, JS; Wong, JWC; Bilal, M; Kim, SH; Bui, XT; Parra-Saldívar, R Microbial electrolysis: a promising approach for treatment and resource recovery from industrial wastewater(2022)Bioengineered, 13.0, 4
9762 Cecconet, D; Molognoni, D; Callegari, A; Capodaglio, AG Agro-food industry wastewater treatment with microbial fuel cells: Energetic recovery issues(2018)International Journal Of Hydrogen Energy, 43.0, 1
27343 Addagada, L; Goel, M; Shahid, MK; Prabhu, SV; Chand, S; Sahoo, NK; Rout, PR Tricks and tracks in resource recovery from wastewater using bio-electrochemical systems (BES): A systematic review on recent advancements and future directions(2023)
8002 Abubackar, HN; Biryol, I; Ayol, A Yeast industry wastewater treatment with microbial fuel cells: Effect of electrode materials and reactor configurations(2023)International Journal Of Hydrogen Energy, 48, 33
17465 Koleva, R; Peeva, G; Yemendzhiev, H; Nenov, V Potential Use of Microbial Fuel Cell Technology in Wastewater Treatment(2022)Processes, 10, 3
13932 Mukherjee, A; Zaveri, P; Patel, R; Shah, MT; Munshi, NS Optimization of microbial fuel cell process using a novel consortium for aromatic hydrocarbon bioremediation and bioelectricity generation(2021)
10117 Quraishi, M; Wani, K; Pandit, S; Gupta, PK; Rai, AK; Lahiri, D; Jadhav, DA; Ray, RR; Jung, SP; Thakur, VK; Prasad, R Valorisation of CO2 into Value-Added Products via Microbial Electrosynthesis (MES) and Electro-Fermentation Technology(2021)Fermentation-Basel, 7.0, 4
7241 Roy, M; Aryal, N; Zhang, YF; Patil, SA; Pant, D Technological progress and readiness level of microbial electrosynthesis and electrofermentation for carbon dioxide and organic wastes valorization(2022)
6724 Bhattacharya, A; Neena, M; Chatterjee, P Microbial nutrient recovery cell as an efficient and sustainable nutrient recovery option in sewage treatment(2024)
Scroll