Knowledge Agora



Similar Articles

Title Biofuel production for circular bioeconomy: Present scenario and future scope
ID_Doc 6563
Authors Ye, YY; Guo, WS; Ngo, HH; Wei, W; Cheng, DL; Bui, XT; Hoang, NB; Zhang, HY
Title Biofuel production for circular bioeconomy: Present scenario and future scope
Year 2024
Published
Abstract In recent years, biofuel production has attracted considerable attention, especially given the increasing worldwide demand for energy and emissions of greenhouse gases that threaten this planet. In this case, one possible solution is to convert biomass into green and sustainable biofuel, which can enhance the bioeconomy and contribute to sustainable economic development goals. Due to being in large quantities and containing high organic content, various biomass sources such as food waste, textile waste, microalgal waste, agricultural waste and sewage sludge have gained significant attention for biofuel production. Also, biofuel production technologies, including thermochemical processing, anaerobic digestion, fermentation and bioelectrochemical systems, have been extensively reported, which can achieve waste valorization through producing biofuels and reutilizing wastes. Nevertheless, the commercial feasibility of biofuel production is still being determined, and it is unclear whether biofuel can compete equally with other existing fuels in the market. The concept of a circular economy in biofuel production can promote the environmentally friendly and sustainable valorization of biomass waste. This review comprehensively discusses the state-of-the-art production of biofuel from various biomass sources and the bioeconomy perspectives associated with it. Biofuel production is evaluated within the framework of the bioeconomy. Further perspectives on possible integration approaches to maximizing waste utilization for biofuel production are discussed, and what this could mean for the circular economy. More research related to pretreatment and machine learning of biofuel production should be conducted to optimize the biofuel production process, increase the biofuel yield and make the biofuel prices competitive.
PDF https://doi.org/10.1016/j.scitotenv.2024.172863

Similar Articles

ID Score Article
2660 Saravanan, A; Karishma, S; Kumar, PS; Rangasamy, G A review on regeneration of biowaste into bio-products and bioenergy: Life cycle assessment and circular economy(2023)
10373 Nair, LG; Agrawal, K; Verma, P An overview of sustainable approaches for bioenergy production from agro-industrial wastes(2022)
25076 Singh, PK; Mohanty, P; Mishra, S; Adhya, TK Food Waste Valorisation for Biogas-Based Bioenergy Production in Circular Bioeconomy: Opportunities, Challenges, and Future Developments(2022)
8424 Clauser, NM; González, G; Mendieta, CM; Kruyeniski, J; Area, MC; Vallejos, ME Biomass Waste as Sustainable Raw Material for Energy and Fuels(2021)Sustainability, 13.0, 2
16191 Garg, A; Basu, S; Shetti, NP; Bhattu, M; Alodhayb, AN; Pandiaraj, S Biowaste to bioenergy nexus: Fostering sustainability and circular economy(2024)
21260 Kumar, V; Vangnai, AS; Sharma, N; Kaur, K; Chakraborty, P; Umesh, M; Singhal, B; Utreja, D; Carrasco, EU; Andler, R; Awasthi, MK; Taherzadeh, MJ Bioengineering of biowaste to recover bioproducts and bioenergy: A circular economy approach towards sustainable zero-waste environment(2023)
28488 Kumar, B; Verma, P Biomass-based biorefineries: An important architype towards a circular economy(2021)
13097 Sikiru, S; Abioye, KJ; Adedayo, HB; Adebukola, SY; Soleimani, H; Anar, M Technology projection in biofuel production using agricultural waste materials as a source of energy sustainability: A comprehensive review(2024)
15180 Kowalski, Z; Kulczycka, J; Verhé, R; Desender, L; De Clercq, G; Makara, A; Generowicz, N; Harazin, P Second-generation biofuel production from the organic fraction of municipal solid waste(2022)
22590 Okolie, JA; Epelle, EI; Tabat, ME; Orivri, U; Amenaghawon, AN; Okoye, PU; Gunes, B Waste biomass valorization for the production of biofuels and value-added products: A comprehensive review of thermochemical, biological and integrated processes(2022)
Scroll