Knowledge Agora



Similar Articles

Title Life Cycle Assessment of a Plastic Part Injected with Recycled Polypropylene: A Comparison with Alternative Virgin Materials
ID_Doc 6614
Authors Galve, JE; Elduque, D; Pina, C; Javierre, C
Title Life Cycle Assessment of a Plastic Part Injected with Recycled Polypropylene: A Comparison with Alternative Virgin Materials
Year 2022
Published International Journal Of Precision Engineering And Manufacturing-Green Technology, 9, 3
Abstract Plastics recycling is becoming a common action to reduce our products and processes' environmental impact, and it is of the utmost importance to introduce circular economy strategies. However, for most of the different types of thermoplastics, recycling is not currently its usual end of life due to the technical difficulties in the sorting and recycling processes. This paper presents the complete life cycle assessment of an industrial component made with three different thermoplastics; two virgin thermoplastics typically used for similar parts in the market as Polyamide 6 and Polypropylene, and an alternative source of 100% recycled Polypropylene. All life cycle stages are included in the study. After carrying out the life cycle inventory, calculations of the environmental impact of each life cycle steps have been performed with ReCiPe 2016 EndPoint (H/A) v1.03/World and with IPCC 2013 GWP 100a v1.03 methodologies, comparing all three materials under the same conditions. A sensibility assessment has also been performed, calculating a worst-case scenario of the recycled material, and considering higher material acquisition distances. This study shows that recycled Polypropylene contributes to reducing the overall environmental impact of the component life cycle by 29.8% under ReCiPe, and by 42.8% under Carbon Footprint when compared to virgin Polypropylene. For the worst-case scenario, these reductions in the environmental impact of the component life cycle are also significant: 23.2% and 36.4%, respectively, showing that the use of recycled polymers is a key approach to reduce the environmental impact of plastic components.
PDF

Similar Articles

ID Score Article
15267 Huang, PW; Peng, HS Number of Times Recycled and Its Effect on the Recyclability, Fluidity and Tensile Properties of Polypropylene Injection Molded Parts(2021)Sustainability, 13, 19
18964 Mannheim, V; Simenfalvi, Z Total Life Cycle of Polypropylene Products: Reducing Environmental Impacts in the Manufacturing Phase(2020)Polymers, 12.0, 9
20665 Jagadeesh, P; Rangappa, SM; Siengchin, S; Puttegowda, M; Thiagamani, SMK; Rajeshkumar, G; Kumar, MH; Oladijo, OP; Fiore, V; Cuadrado, MMM Sustainable recycling technologies for thermoplastic polymers and their composites: A review of the state of the art(2022)Polymer Composites, 43, 9
18566 Mannheim, V Life Cycle Assessment Model of Plastic Products: Comparing Environmental Impacts for Different Scenarios in the Production Stage(2021)Polymers, 13.0, 5
24299 Nordahl, SL; Baral, NR; Helms, BA; Scown, CD Complementary roles for mechanical and solvent- based recycling in low- carbon, circular polypropylene(2023)Proceedings Of The National Academy Of Sciences Of The United States Of America, 120, 46
28581 Albiter, NL; Pérez, OS; Klotz, M; Ganesan, K; Carrasco, F; Dagréou, S; Maspoch, ML; Valderrama, C Implications of the Circular Economy in the Context of Plastic Recycling: The Case Study of Opaque PET(2022)Polymers, 14.0, 21
21899 Eriksen, MK; Christiansen, JD; Daugaard, AE; Astrup, TF Closing the loop for PET, PE and PP waste from households: Influence of material properties and product design for plastic recycling(2019)
17052 Jeswani, H; Krüger, C; Russ, M; Horlacher, M; Antony, F; Hann, S; Azapagic, A Life cycle environmental impacts of chemical recycling via pyrolysis of mixed plastic waste in comparison with mechanical recycling and energy recovery(2021)
16744 Kolluru, S; Thakur, A; Tamakuwala, D; Kumar, VV; Ramakrishna, S; Chandran, S Sustainable recycling of polymers: a comprehensive review(2024)Polymer Bulletin, 81, 11
29510 Ragaert, K; Hubo, S; Delva, L; Veelaert, L; Du Bois, E Upcycling of contaminated post-industrial polypropylene waste: A design from recycling case study(2018)Polymer Engineering And Science, 58.0, 4
Scroll