Knowledge Agora



Similar Articles

Title Concomitant strategy of wastewater treatment and biodiesel production using innate yeast cell (Rhodotorula mucilaginosa) from food industry sewerage and its energy system analysis
ID_Doc 7100
Authors Sundaramahalingam, MA; Sivashanmugam, P
Title Concomitant strategy of wastewater treatment and biodiesel production using innate yeast cell (Rhodotorula mucilaginosa) from food industry sewerage and its energy system analysis
Year 2023
Published
Abstract In many recent studies, the wastewater with high organic matter and high utilization value compounds was treated using yeast. It decreases the effluent contaminants and makes it applicable for reuse in many food in-dustries. This present study focuses on the combined approach of treatment and biorefinery to increase the circular economy in food industries. The two primary goals of the work were to screen the potential oleaginous yeast from the food industry effluent (FIE) collected from the food flavourant producing industry and used for FIE remediation through bioaugmentation and to extract microbial oil of yeast biomass harvested after remediation. Further, the extracted microbial oil was trans-esterified to produce biodiesel. The process of transesterification was optimized for its influencing parameters. After 10 days of treatment of FIE with the yeast cell, the treatment efficiency was analyzed and found to be precise with the typical discharge value. The overall lipid content of the oleaginous yeast (Rhodotorula mucilaginosa SML) used for the FIE treatment was 67.95 w/w% of dry cell biomass. The extracted microbial oil was used for transesterification; the process was optimized through the one-variable analysis approach and response surface methodology optimization using a central composite design. The transesterification process showed maximum conversion (98%) at oil to methanol ratio -5.0, catalyst concen-tration -2.8% and time -1.15 h. The fatty acid composition and the physicochemical characteristics were compatible with petroleum diesel, making it applicable for alternative biofuel production. Thus, this concomitant strategy has proved efficient for reducing contaminants in FIE and suggested a new sustainable source for bio-diesel production. The exergy, energy and mass balance analysis of the biodiesel conversion process proved that this process is the most economically viable one to increase the circular economy of food industries.
PDF

Similar Articles

ID Score Article
29584 Chintagunta, AD; Zuccaro, G; Kumar, M; Kumar, SPJ; Garlapati, VK; Postemsky, PD; Kumar, NSS; Chandel, AK; Simal-Gandara, J Biodiesel Production From Lignocellulosic Biomass Using Oleaginous Microbes: Prospects for Integrated Biofuel Production(2021)
26060 Bencresciuto, GF; Mandala, C; Migliori, CA; Giansante, L; Di Giacinto, L; Bardi, L Microbial Biotechnologies to Produce Biodiesel and Biolubricants from Dairy Effluents(2024)Fermentation-Basel, 10, 6
7298 Singh, S; Chaturvedi, S; Syed, N; Rastogi, D; Kumar, P; Sharma, PK; Kumar, D; Sahoo, D; Srivastava, N; Nannaware, AD; Khare, SK; Rout, PK Production of fatty acids from distilled aromatic waste biomass using oleaginous yeast(2024)
12463 Barampouti, EM; Mai, S; Malamis, D; Moustakas, K; Loizidou, M Liquid biofuels from the organic fraction of municipal solid waste: A review(2019)
10986 Carota, E; Petruccioli, M; D'Annibale, A; Crognale, S Mixed glycerol and orange peel-based substrate for fed-batch microbial biodiesel production(2020)Heliyon, 6, 9
9611 Sayin, B; Kaban, G Biotechnological Innovations Unleashing the Potential of Olive Mill Wastewater in Added-Value Bioproducts(2024)Foods, 13.0, 14
10750 Talapatra, N; Ghosh, UK New concept of biodiesel production using food waste digestate powder: Co-culturing algae-activated sludge symbiotic system in low N and P paper mill wastewater(2022)
15103 Lopes, M; Miranda, SM; Alves, JM; Pereira, AS; Belo, I Waste Cooking Oils as Feedstock for Lipase and Lipid-Rich Biomass Production(2019)European Journal Of Lipid Science And Technology, 121, 1
11087 Pathania, AS; Jana, AK; Jana, MM Valorization of waste frying oil to lipopeptide biosurfactant by indigenous Bacillus licheniformis through co-utilization in mixed substrate fermentation(2022)Brazilian Journal Of Chemical Engineering, 39, 2
16284 Rasmeni, ZZ; Madyira, DM; Olatunji, OO; Matheri, AN; Adedeji, PA Baseline Evaluation Of Methanogenic Potential For Mono And Co-Digested Wastewater Biosolids And Brewery Spent Yeast(2022)
Scroll