Knowledge Agora



Similar Articles

Title Current biotechnologies on depolymerization of polyethylene terephthalate (PET) and repolymerization of reclaimed monomers from PET for bio-upcycling: A critical review
ID_Doc 7928
Authors Kim, NK; Lee, SH; Park, HD
Title Current biotechnologies on depolymerization of polyethylene terephthalate (PET) and repolymerization of reclaimed monomers from PET for bio-upcycling: A critical review
Year 2022
Published
Abstract The production of polyethylene terephthalate (PET) has drastically increased in the past half-century, reaching 30 million tons every year. The accumulation of this recalcitrant waste now threatens diverse ecosystems. Despite efforts to recycle PET wastes, its rate of recycling remains limited, as the current PET downcycling is mostly unremunerative. To address this problem, PET bio-upcycling, which integrates microbial depolymerization of PET followed by repolymerization of PET-derived monomers into value-added products, has been suggested. This article critically reviews current understanding of microbial PET hydrolysis, the metabolic mechanisms involved in PET degradation, PET hydrolases, and their genetic improvement. Furthermore, this review includes the use of meta-omics approaches to search PET-degrading microbiomes, microbes, and putative hydrolases. The current development of biosynthetic technologies to convert PET-derived materials into valueadded products is also comprehensively discussed. The integration of various depolymerization and repolymerization biotechnologies enhances the prospects of a circular economy using waste PET.
PDF

Similar Articles

ID Score Article
6877 Lee, S; Lee, YR; Kim, SJ; Lee, JS; Min, K Recent advances and challenges in the biotechnological upcycling of plastic wastes for constructing a circular bioeconomy(2023)
20128 Zimmermann, W Biocatalytic recycling of polyethylene terephthalate plastic(2020)Philosophical Transactions Of The Royal Society A-Mathematical Physical And Engineering Sciences, 378, 2176
26004 Carr, CM; Clarke, DJ; Dobson, ADW Microbial Polyethylene Terephthalate Hydrolases: Current and Future Perspectives(2020)
29542 Urbanek, AK; Kosiorowska, KE; Mironczuk, AM Current Knowledge on Polyethylene Terephthalate Degradation by Genetically Modified Microorganisms(2021)
10413 Liu, P; Zheng, Y; Yuan, YB; Han, YF; Su, TY; Qi, QS Upcycling of PET oligomers from chemical recycling processes to PHA by microbial co-cultivation(2023)
29107 Weiland, F; Kohlstedt, M; Wittmann, C Biobased de novo synthesis, upcycling, and recycling - the heartbeat toward a green and sustainable polyethylene terephthalate industry(2024)
13748 Sui, BB; Wang, T; Fang, JX; Hou, ZX; Shu, T; Lu, ZH; Liu, F; Zhu, YS Recent advances in the biodegradation of polyethylene terephthalate with cutinase-like enzymes(2023)
28175 Bora, DK Rise of the sustainable circular economy platform from waste plastics: A biotechnological perspective(2020)
8221 Shi, LX; Zhu, LL Recent Advances and Challenges in Enzymatic Depolymerization and Recycling of PET Wastes(2024)Chembiochem, 25.0, 2
9699 Kolitha, BS; Jayasekara, SK; Tannenbaum, R; Jasiuk, IM; Jayakody, LN Repurposing of waste PET by microbial biotransformation to functionalized materials for additive manufacturing(2023)Journal Of Industrial Microbiology & Biotechnology, 50.0, 1
Scroll