Knowledge Agora



Similar Articles

Title Exergy and energy analysis of three biogas upgrading processes
ID_Doc 9592
Authors Vilardi, G; Bassano, C; Deiana, P; Verdone, N
Title Exergy and energy analysis of three biogas upgrading processes
Year 2020
Published
Abstract The aim of this work was to provide a complete exergy and energy analysis of three biogas upgrading technologies: amine scrubbing, water scrubbing and membrane separation processes. Biogas production and treatment represents a key-process for the application of Circular Economy principles, since allows to reuse/reconvert industrial by-products or agro-industrial waste in a product that can be used in different energy demanding sectors, after proper cleaning and upgrading processes. The three technologies here reported have been implemented in Aspen Plus flowsheets, and were used to upgrade a biogas to biomethane, meeting the UNIT/TS 11537:2019 standards for Biogas to be injected in the gas grid. Each units of all the simulated processes have been analysed calculating total exergy feed, total exergy produced and exergy loss, distinguishing that lost for irreversibility and as waste. Water scrubbing was characterized by the highest values of exergy efficiency (94.5%) and methane recovery (99%), whereas the lowest exergy efficiency belonged to membrane separation (90.8%) that returned also the largest specific energy consumption (0.94 kWh/m(3) STP). Conversely, amine scrubbing was characterized by the lowest specific energy consumption value (0.204 kWh/m(3) STP) but by an exergy efficiency of 91.1%.
PDF

Similar Articles

ID Score Article
9503 Vega, A; Gil, MV; Pevida, C Preliminary life cycle study of an adsorption-based biogas purification plant. Analysis of possible scenarios(2023)
8492 Lindkvist, E; Johansson, MT; Rosenqvist, J Methodology for Analysing Energy Demand in Biogas Production Plants-A Comparative Study of Two Biogas Plants(2017)Energies, 10.0, 11
21408 Michailos, S; Walker, M; Moody, A; Poggio, D; Pourkashanian, M Biomethane production using an integrated anaerobic digestion, gasification and CO2 biomethanation process in a real waste water treatment plant: A techno-economic assessment(2020)
9304 Dhull, P; Lohchab, RK; Kumar, S; Kumari, M; Shaloo; Bhankhar, AK Anaerobic Digestion: Advance Techniques for Enhanced Biomethane/Biogas Production as a Source of Renewable Energy(2024)Bioenergy Research, 17.0, 2
15786 Gadirli, G; Pilarska, AA; Dach, J; Pilarski, K; Kolasa-Wiecek, A; Borowiak, K Fundamentals, Operation and Global Prospects for the Development of Biogas Plants-A Review(2024)Energies, 17, 3
76441 Iglesias, R; Muñoz, R; Polanco, M; Díaz, I; Susmozas, A; Moreno, AD; Guirado, M; Carreras, N; Ballesteros, M Biogas from Anaerobic Digestion as an Energy Vector: Current Upgrading Development(2021)Energies, 14, 10
16570 Ellacuriaga, M; García-Cascallana, J; Gómez, X Biogas Production from Organic Wastes: Integrating Concepts of Circular Economy(2021)Fuels, 2, 2
66797 Funmi, AE; Suleiman, MA; Deborah, OI; Dorcas, AT Biogas production as energy source and strategy for managing waste and climate change(2021)Sn Applied Sciences, 3, 1
16896 Mignogna, D; Ceci, P; Cafaro, C; Corazzi, G; Avino, P Production of Biogas and Biomethane as Renewable Energy Sources: A Review(2023)Applied Sciences-Basel, 13, 18
25191 Fernández, LMG; Estévez, EP; Baena-Moreno, FM; Arena, LFV; Rubia, BN Advances in research project IBUMECO2: project and process description, methodology, and goals expected(2023)Greenhouse Gases-Science And Technology, 13, 2
Scroll