Knowledge Agora



Scientific Article details

Title Effect of Recycled Concrete Aggregate Utilization Ratio on Thermal Properties of Self-Cleaning Lightweight Concrete Facades
ID_Doc 64803
Authors Beytekin, HE; Sahin, HG; Mardani, A
Title Effect of Recycled Concrete Aggregate Utilization Ratio on Thermal Properties of Self-Cleaning Lightweight Concrete Facades
Year 2024
Published Sustainability, 16, 14
DOI 10.3390/su16146056
Abstract In today's environment, where energy is desired to be used more efficiently, it has been understood that the interest in the use of lightweight concrete with superior performance in terms of thermal insulation properties has increased. On the other hand, it has been stated that construction waste increases rapidly, especially after severe earthquakes. In this context, encouraging the use of recycled concrete waste and efficient disposal of construction and demolition waste is of great importance for the European Green Deal. It is also known that pollutants such as COx and NOx stick to facades over time, causing environmental pollution and visual deterioration. It has been reported that materials with photocatalytic properties are used in lightweight concrete facade elements to prevent such problems. This study examines the effect of using recycled concrete aggregates on the thermal properties of self-cleaning lightweight concrete mixtures (SCLWC). For this purpose, an SCLWC containing 1% TiO2 and 100% pumice aggregate was prepared. By replacing pumice aggregate with recycled concrete aggregate at the rates of 15%, 25%, 35%, 45% and 50%, four different SCLWCs with self-cleaning properties were produced. High-temperature resistance, thermal conductivity performance, microstructure analysis and photocatalytic properties of the produced mixtures were examined. It has been understood that the unit volume weight loss of SCLWC mixtures exposed to high temperatures generally decreases due to the increase in the recycled concrete-aggregate substitution rate. However, it was determined that the loss of compressive strength increased with the increase in the amount of recycled concrete-aggregate replacement. Additionally, it was determined that the thermal-conductivity coefficient values of the mixtures decreased with the use of pumice. After SCLWC mixtures were exposed to 900 degrees C, small round-shaped crystals formed instead of C-S-H crystals.
Author Keywords self-cleaning concrete; lightweight concrete; recycled concrete aggregate; thermal conductivity; high-temperature resistance
Index Keywords Index Keywords
Document Type Other
Open Access Open Access
Source Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
EID WOS:001277234600001
WoS Category Green & Sustainable Science & Technology; Environmental Sciences; Environmental Studies
Research Area Science & Technology - Other Topics; Environmental Sciences & Ecology
PDF https://doi.org/10.3390/su16146056
Similar atricles
Scroll