Knowledge Agora



Similar Articles

Title Microbial electrosynthesis: carbonaceous electrode materials for CO2 conversion
ID_Doc 12910
Authors Lekshmi, GS; Bazaka, K; Ramakrishna, S; Kumaravel, V
Title Microbial electrosynthesis: carbonaceous electrode materials for CO2 conversion
Year 2023
Published Materials Horizons, 10.0, 2
Abstract Microbial electrosynthesis (MES) is a sustainable approach to address greenhouse gas (GHG) emissions using anthropogenic carbon dioxide (CO2) as a building block to create clean fuels and highly valuable chemicals. The efficiency of MES-based CO2 conversion is closely related to the performance of electrode material and, in particular, the cathode for which carbonaceous materials are frequently used. Compared to expensive metal electrodes, carbonaceous materials are biocompatible with a high specific surface area, wide range of possible morphologies, and excellent chemical stability, and their use can maximize the growth of bacteria and enhance electron transfer rates. Examples include MES cathodes based on carbon nanotubes, graphene, graphene oxide, graphite, graphite felt, graphitic carbon nitride (g-C3N4), activated carbon, carbon felt, carbon dots, carbon fibers, carbon brushes, carbon cloth, reticulated vitreous carbon foam, MXenes, and biochar. Herein, we review the state-of-the-art MES, including thermodynamic and kinetic processes that underpin MES-based CO2 conversion, as well as the impact of reactor type and configuration, selection of biocompatible electrolytes, product selectivity, and the use of novel methods for stimulating biomass accumulation. Specific emphasis is placed on carbonaceous electrode materials, their 3D bioprinting and surface features, and the use of waste-derived carbon or biochar as an outstanding material for further improving the environmental conditions of CO2 conversion using carbon-hungry microbes and as a step toward the circular economy. MES would be an outstanding technique to develop rocket fuels and bioderived products using CO2 in the atmosphere for the Mars mission.
PDF https://pubs.rsc.org/en/content/articlepdf/2023/mh/d2mh01178f

Similar Articles

ID Score Article
8024 Bian, B; Bajracharya, S; Xu, JJ; Pant, D; Saikaly, PE Microbial electrosynthesis from CO2: Challenges, opportunities and perspectives in the context of circular bioeconomy(2020)
8148 Jiang, Y; May, HD; Lu, L; Liang, P; Huang, X; Ren, ZJ Carbon dioxide and organic waste valorization by microbial electrosynthesis and electro-fermentation(2019)
10117 Quraishi, M; Wani, K; Pandit, S; Gupta, PK; Rai, AK; Lahiri, D; Jadhav, DA; Ray, RR; Jung, SP; Thakur, VK; Prasad, R Valorisation of CO2 into Value-Added Products via Microbial Electrosynthesis (MES) and Electro-Fermentation Technology(2021)Fermentation-Basel, 7.0, 4
7241 Roy, M; Aryal, N; Zhang, YF; Patil, SA; Pant, D Technological progress and readiness level of microbial electrosynthesis and electrofermentation for carbon dioxide and organic wastes valorization(2022)
8531 Stöckl, M; Lange, T; Izadi, P; Bolat, S; Teetz, N; Harnisch, F; Holtmann, D Application of gas diffusion electrodes in bioeconomy: An update(2023)Biotechnology And Bioengineering, 120.0, 6
18281 Koleva, R; Stankulov, T; Boukoureshtlieva, R; Yemendzhiev, H; Momchilov, A; Nenov, V Alternative Biological Process for Livestock Manure Utilization and Energy Production Using Microbial Fuel Cells(2022)Journal Of The Electrochemical Society, 169.0, 3
13071 Bajracharya, S; Bian, B; Jimenez-Sandoval, R; Matsakas, L; Katuri, KP; Saikaly, PE Nature inspired catalysts: A review on electroactive microorganism-based catalysts for electrochemical applications(2024)
28049 Mishra, R; Gollakota, ARK; Shu, CM Cultivating eco-advantages: Unleashing the distinctive potential of biochar in microbial fuel cells(2024)
14376 Brandao, ATSC; State, S; Costa, R; Potorac, P; Vázquez, JA; Valcarcel, J; Silva, AF; Anicai, L; Enachescu, M; Pereira, CM Renewable Carbon Materials as Electrodes for High-Performance Supercapacitors: From Marine Biowaste to High Specific Surface Area Porous Biocarbons(2023)Acs Omega, 8, 21
14423 Marcos-Madrazo, A; Casado-Coterillo, C; Iniesta, J; Irabien, A Use of Chitosan as Copper Binder in the Continuous Electrochemical Reduction of CO2 to Ethylene in Alkaline Medium(2022)Membranes, 12, 8
Scroll